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Abstract

Stress is associated with significant behavioral and physiological changes, including decreased heart rate variability (HRV)
at rest. Environmental factors such as air pollution are increasingly recognized as potential triggers of physiological stress
responses, especially in highly polluted cities such as Almaty, Kazakhstan. However, the relationship between air quality
and HRV as a physiological stress marker has not been sufficiently studied. This study explores the development of an loT
system for assessing physiological stress levels based on HRV under various environmental conditions, with a particular
focus on air pollution. The study was conducted in three contrasting locations in Almaty, Kazakhstan: a green vegetation
area (Botanical Garden), a busy urban area (Al-Farabi Avenue), and an enclosed space with regulated conditions
(laboratory). HRV data were synchronously recorded from 10 healthy volunteers using both an optical
photoplethysmography (PPG) sensor and an electrocardiographic (ECG) sensor, while air quality parameters (PMa.s, PMi,
CO:) were measured simultaneously. The results showed that sympathetic nervous system activation was most pronounced
in the Botanical Garden, where elevated levels of particulate matter (PMzs and PM1o) were detected. Fine PM_ s particles
had the most significant impact on HRV, followed by PM1g and CO., leading to a reduction in overall HRV and an increase
in the low-frequency to high-frequency (LF/HF) ratio, indicating heightened physiological stress. Machine learning models,
including DNN, XGBoost, Random Forest, and TabNet, were developed and trained to assess stress levels based on air
quality data. Among them, the XGBoost model achieved the highest classification accuracy of 91.92%. This research
provides valuable insights for evaluating disease risks and analyzing the potential impact of long-term exposure to polluted
air on the cardiovascular system.
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1. Introduction

Air pollution is a widespread global issue with profound health implications, including the development of stress and
cardiovascular diseases [1]. Stress is a natural physiological response of the body to negative environmental influences,
which, when prolonged, transforms into chronic stress [2] associated with an increased risk of various pathologies. One of
the key factors contributing to such stress is air pollution, particularly fine particulate matter (PM.s), which is generated by
industrial activities and other anthropogenic sources [3]. Epidemiological and toxicological studies define PM.s as particles
with an aerodynamic diameter of less than 2.5 um, posing a significant health hazard [4]. Once inhaled, these particles
penetrate the lung alveoli and enter the bloodstream, where they stimulate the production of reactive oxygen species (ROS),
induce oxidative stress, and trigger the release of inflammatory mediators, leading to nearly 4 million deaths worldwide due
to cardiopulmonary diseases [4].

According to WHO estimates [5], approximately 99% of the world's population is exposed to air pollution levels
exceeding the safe threshold for PM. s, with around 4.2 million deaths linked to this factor. Prolonged exposure to polluted
air also negatively affects the brain, as it weakens the integrity of the blood-brain barrier and causes neuronal damage [6,
7]. This leads to increased levels of anxiety, depression, and cognitive dysfunction among residents of polluted areas [3].
Pregnant women are particularly vulnerable, as exposure to PM; s significantly elevates stress levels in this group [6].

Air pollution exacerbates inflammatory responses, disrupts endothelial function, and intensifies oxidative stress [8],
which forms a pathophysiological basis for the development of cardiovascular diseases [9]. At the same time, chronic stress
factors activate the sympathetic nervous system and contribute to endothelial dysfunction [10], which causes an imbalance
between antioxidant mechanisms and reactive oxygen species, a decrease in nitric oxide levels, impaired vascular tone, and
an increased risk of thrombosis [11]. The resulting inflammatory responses further damage the endothelium and accelerate
the progression of atherosclerosis, while associated metabolic disorders, including obesity and insulin resistance, aggravate
pathological processes in the cardiovascular system [12]. A key indicator of the degree of stress exposure on the body is
heart rate variability, recorded using electrocardiography and photoplethysmography, which reflects the balance between
the sympathetic and parasympathetic nervous systems [13] and provides an objective assessment of stress levels.

1.1. Heart Rate Variability as an Indicator of Autonomic Regulation and Stress

Heart rate variability (HRV) analysis is widely used for the objective assessment of stress levels. HRV reflects the
heart's adaptive capacity to changing conditions and is a reliable indicator of stress and overall health status [14]. HRV is
primarily measured using electrocardiography (ECG), which is considered the gold standard due to its high measurement
accuracy, and photoplethysmography (PPG), which is employed in portable devices and allows continuous monitoring
[15]. These technological solutions enable real-time tracking of HRV dynamics and help assess the body's response to
various stressors, including air pollutants.

HRYV is directly linked to the functional state of the autonomic nervous system (ANS), which regulates the activity of
internal organs and consists of two main components: the sympathetic (SNS) and parasympathetic (PNS) divisions. The
sympathetic nervous system is activated in response to stress, physical exertion, and danger, triggering tachycardia,
increased blood pressure, and the mobilization of energy resources known as the "fight-or-flight" response [16]. In contrast,
the parasympathetic system promotes recovery during rest, reducing heart rate, lowering blood pressure, and stimulating
digestive processes, referred to as the "rest-and-digest” response [17]. Under normal conditions, a balance between these
systems ensures an adequate physiological response to various stimuli. However, chronic stress induced by air pollution
leads to SNS hyperactivation and simultaneous PNS suppression, resulting in an increased heart rate, elevated blood
pressure, and impaired recovery mechanisms. This imbalance can reduce the body's adaptive potential and increase the risk
of cardiovascular diseases [16]. High HRV values indicate an optimal balance between SNS and PNS activity, reflecting
effective adaptation, whereas low HRV suggests predominant sympathetic activity and a heightened level of chronic stress.

Individuals exposed to PM_s particles exhibit suppression of parasympathetic activity, which manifests as decreased
HRYV, increased anxiety, and irritability [18]. This effect is observed in natural conditions and experimental studies utilizing
virtual reality (VR) technologies. In an experimental setting, it has been established that stress-inducing stimuli
significantly reduce HRV parameters, indicating SNS activation [19].
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A study by Tonacci et al. [20] observed that different types of stress have varying effects on the nervous system. For
instance, mental strain, such as solving complex mathematical problems, substantially impacts the autonomic nervous
system more than the effects of odors and other sensory stimuli. These observations suggest that the mechanisms of stress
influence may vary depending on its origin, but ultimately, they lead to a decrease in HRV and dysfunction of ANS
regulatory mechanisms.

Advances in machine learning technologies have improved the accuracy of stress state assessment based on HRV
analysis. The application of depthwise separable convolutional neural networks (DSCNN), support vector machines
(SVM), and random forest (RF) algorithms enables the automatic classification of stress states and assessment of stress
levels based on HRV parameters [21]. The integration of these algorithmic solutions into monitoring systems paves the way
for the development of intelligent platforms that assess the impact of air pollution on stress and overall health indicators
[22]. Combining data on air quality characteristics with physiological parameters allows for the development of new
approaches to early stress detection and individualized adaptation strategies. In the long term, the implementation of
environmental monitoring technologies alongside HRV analysis could significantly mitigate the negative effects of chronic
stress caused by adverse environmental conditions and contribute to improving the population's quality of life [23].

A study Lim et al. [24] demonstrates that the most influential microclimatic factors affecting biometric indicators
include noise, carbon dioxide, dust concentrations, light, temperature, humidity, and odors. The subjective perception of
these factors correlates with insomnia symptoms, sleep quality, and perceived stress [25] highlighting the comprehensive
impact of the environment on physiological well-being, this influence is particularly crucial when organizing rest and sleep
conditions, which are key factors in recovery from stress, as the quality of microclimatic conditions directly determines the
effectiveness of parasympathetic restorative processes [26].

A comparison of the effects of natural and urban environments on physiological indicators reveals significant
differences. Being in a natural environment contributes to increased HRV and reduced salivary cortisol levels, indicating
decreased physiological stress [27]. Walking in natural areas significantly lowers cortisol levels compared to walking on
urban streets, demonstrating the stress-reducing effect of interaction with nature. At the same time, the presence of green
spaces and the intensity, duration, and frequency of interaction with them play a crucial role [27, 28]. Enhancing visual and
auditory experiences with tactile and olfactory stimuli in urban green spaces reduces stress and improves overall well-being
[29]. This underscores the importance of creating a balanced environment to maximize psychological benefits.

1.2. Advanced Approaches for Assessing Environmental Impact on Stress Levels

Machine learning and artificial intelligence represent key approaches to researching the impact of the environment on
stress. These technologies, combined with wearable devices, enable real-time collection of physiological data and allow
continuous monitoring of psychological and physiological responses to various stressors. Campanella et al. [30]
investigated the use of a wristband for recording photoplethysmographic and electrodermal signals, which were
subsequently processed using Random Forest, SVM, and Logistic Regression algorithms. Among these, Random Forest
achieved the highest accuracy (76.5%) by utilizing 27 extracted features for the binary classification of stress states [30]. A
similar methodology was applied by Georgas et al. [31], where a galvanic skin response (GSR) sensor was used to assess
anxiety in patients during COVID screening, revealing a correlation between environmental stress factors and
psychological reactions in 51 subjects through automatic classification of physiological signals. Significant progress is
demonstrated by Moser et al. [32] who proposed an LSTM network with a deep generative ensemble GAN, outperforming
traditional algorithms by 7.18% in accuracy when using integrated gradients to identify key stress features and process
sparsely labeled data. The innovative "Stress-Track" system [33] based on Internet of Things (loT) technologies, the system
achieved an impressive 99.5% accuracy in monitoring body temperature, sweating, and motor activity, which is particularly
crucial for the early detection of stress responses to air pollution and other environmental factors that trigger oxidative
stress.

Expanding this research direction, scientists have developed other effective methods for stress assessment. Bin Heyat
et al. [34] used smart shirts to collect ECG signals from two groups of 10 participants each, one group experiencing stress
after a 12-hour work shift and the other in a normal state [34]. Analysis of these data using various classifiers showed that
the decision tree algorithm achieved the highest performance with a recall of 93.30% and an accuracy of 94.40%, which
confirms the link between psychological stress and physiological disruptions, including mitochondrial dysfunction,
oxidative stress, and elevated blood pressure. A study Almadhor et al. [27] observed that an innovative federated learning
method with deep neural networks was applied, achieving 86.82% accuracy in classifying electrodermal activity from the
WESAD dataset into five different states: transitional, baseline, stress, amusement, and meditation. A key feature of this
method was ensuring patient data privacy, which is essential for large-scale monitoring of environmental stressors. A large-
scale study Abd Al-Alim et al. [35] compared the effectiveness of five different machine learning models (KNN, SVC, DT,
RF, and XGBoost) in conditions simulating real environmental exposure, using SWEET data from 240 participants. The
analysis included electrocardiography, skin temperature, and skin conductance data, with the Random Forest algorithm
achieving the best results in binary classification without SMOTE, with an accuracy of 98.29% and an F1-score of 97.89%.
XGBoost outperformed other models in three-level classification with SMOTE, reaching an accuracy and Fl-score of
98.98%. In research [36], researchers demonstrated the effectiveness of the k-Nearest Neighbors algorithm, which achieved
an accuracy of 83.3% when analyzing GSR and PPG data from 37 participants exposed to air raid sirens under regulated
conditions. This broadens the range of studied environmental factors and confirms the feasibility of using machine learning
methods for their assessment.
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With the deterioration of air quality and changing climatic conditions, physiological research is becoming increasingly
important for developing reliable models of environmental impacts on health and for creating scientifically grounded
recommendations for population protection [37].

Air pollution is a significant stress factor affecting physiological indicators; however, most available data on its effects
have been obtained under controlled laboratory conditions [38]. This raises concerns about the applicability of this data for
assessing real-world scenarios where air pollution levels fluctuate depending on climatic conditions, terrain type, and other
factors [39].

Field deployment at a medium-scale plant showed 15% energy consumption, 18% peak demand, 30% CO: emissions,
and 15% downtime with approximately 90% forecasting accuracy, confirming the effectiveness of integrating SCADA,
machine learning, and digital twins [1,1]. On synchronized continuous-monitoring data, XGBoost achieved 91.25%
accuracy, with passenger occupancy emerging as the key determinant of CO2/PM:.s/PMio levels, which justifies prioritizing
ventilation upgrades on overloaded lines [2,1]. Experimental validation of the clean-room loT system at the KazNU IT
Faculty (SCADA Genesis64, Modbus TCP, OPC UA, Google Coral USB) demonstrated approximately 99% sensor
accuracy and control-loop reliability for automated temperature control and air conditioning [3,1]. To verify heating and
cooling loops, a robotic test framework was built with control via a Google Coral USB Accelerator and an ADC, providing
reproducible assessment of temperature/leak/switch sensors and their cyclic behavior, with logging and supervision in
SCADA Genesis64 over OPC UA/Modbus TCP [40].

In this regard, this study conducted a review and analysis to assess the impact of air quality on stress levels in different
environmental conditions. The main objective was to compare physiological responses recorded in three different locations
under exposure to various air pollutants with responses observed in real-world environments with different pollution levels.
The study analyzed changes in cardiovascular stress markers in response to polluted air exposure.

The complexity of field research, which requires control over various parameters such as weather conditions, physical
activity levels, and individual participant characteristics, makes direct experimental investigation of this issue challenging.
However, the analysis of collected data allows us to evaluate differences between laboratory and field conditions while
considering significant factors influencing stress levels. Additionally, the use of machine learning algorithms enables us to
obtain predictive estimates of physiological parameter changes in response to air pollution across various climatic and
environmental conditions.

2. Method
2.1. System Architecture

This section presents the architecture of the developed system, as shown in Figure 1. The system consists of three
subsystems: physiological parameter monitoring, environmental control, and machine learning algorithms.
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Figure 1.

System Architecture.
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The system architecture is designed to monitor physiological parameters and environmental context, followed by
machine learning analysis. The system comprises three key components: a data acquisition module, a server backend, and
an intelligent processing unit. To assess stress levels, two data sources are utilized: the Polar H10 chest strap device, which
records electrocardiographic (ECG) signals, and the custom-developed 10T device Senim, equipped with a MAX30102
photoplethysmographic (PPG) sensor and an ESP32 microcontroller.

ECG signals are transmitted via Bluetooth to the mobile application HRV Logger, which extracts heart rate variability
(HRV) metrics and sends them to the server. Simultaneously, 10T device Senim records PPG signals and transmits them to
the server via Wi-Fi. An essential aspect of the methodology is the use of data from the Polar H10 as a reference for
validating the measurements obtained from the IoT device Senim to ensure their reliability and accuracy. In parallel,
environmental parameters are monitored using a set of sensors: ZH06 (for PM25 and PMo), DHT11 (for temperature and
humidity), and MH-Z19C (for carbon dioxide). These data are also sent to the server via Wi-Fi. The server backend
provides centralized data storage in an SQL relational database and prepares the information for analysis.

After preliminary processing, the data is passed to the machine learning stage, where it is analyzed using deep neural
networks (DNN), gradient boosting (XGBoost), Random Forest, and TabNet. These algorithms help identify patterns
between environmental parameters and the body's physiological responses.

Synchronizing physiological data with environmental parameters enables a comprehensive analysis of the impact of
external factors on the human body.

2.2. Experiment Description

The experiment was conducted in three contrasting environments: an open natural setting, a noisy urban environment,
and an enclosed indoor space. To analyze the impact of environmental factors on stress levels, experimental HRV data
were collected from a group of 10 participants who were sequentially exposed to three different conditions: a natural
outdoor environment in a botanical garden, a noisy urban environment on Al-Farabi Avenue, and the laboratory with
regulated conditions. HRV recordings were conducted for five minutes under each condition with continuous monitoring of
physiological parameters, while environmental conditions (temperature, humidity, and air pollutants) were recorded in real-
time. To ensure consistency across measurements, all sessions at the three locations were conducted on the same day, under
the same weather conditions, and during the same time frame. This helped control for external environmental variability
that could have otherwise influenced HRV outcomes. To minimize the influence of random factors on HRV, participants
were instructed to sit and breathe naturally, avoiding controlled breathing or movement.

The experimental conditions were selected to create clear contrasts between different environmental settings. In the
first phase of the study, participants were in a botanical garden, where noise levels were low, and natural greenery was
present. The second phase took place in an urban environment on Al-Farabi Avenue, where participants were exposed to
moderate environmental stressors such as air pollution, traffic noise, and high pedestrian density. The final phase of the
experiment was conducted indoors under regulated conditions, including the use of humidifiers and air purifiers, which
allowed for the assessment of HRV changes in an environment with minimal variability in external factors.

In previous research, strict participant selection criteria were commonly applied to control for confounding factors and
ensure valid physiological data. This approach is reflected in a clinical health intervention study that required participants
to be predominantly healthy and, in cases of known medical conditions, to present a certificate from a general practitioner
verifying their ability to participate. Individuals whose health issues could interfere with the intervention were excluded
[41]. Similarly, studies assessing cognitive performance in older adults excluded individuals with neurological, psychiatric,
or chronic illnesses to maintain a homogeneous and reliable sample [42]. In physical health studies, participants with
cardiovascular disease or temporary injuries were also excluded to reduce external influences on outcomes [43]. In line
with these approaches, the present study established strict inclusion and exclusion criteria to ensure the reliability of HRV
measurements. It included individuals aged 18 to 22 years without cardiovascular diseases, not taking medications affecting
HRV, and abstaining from alcohol and caffeine for 24 hours before testing as shown in Table 1. Participants were excluded
if they had insufficient sleep (less than six hours), experienced significant psychological or physiological stress on the test
day, or if technical artifacts were detected in HRV data during preprocessing.

Table 1.

The Participant Demographics and Inclusion Criteria for the Experiment.

Location Male Female Total
Participants 6 4 10
Age Range 19-22 18-20 18-22
Average Range 21 19 20
Alcohol Consumers None None None
Caffeine Consumers None None None
Smokers None None None
CVD Cases None None None

2.3. Data Collection
Data collection was conducted systematically during each experimental session, ensuring consistency in recording
physiological parameters and environmental factors. Participants avoided unnecessary movements that could introduce
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artifacts into the data. HRV and environmental factors were continuously measured for five minutes in each test condition.
This time interval provided sufficient data for further analysis of the impact of environmental conditions on autonomic
nervous system function.

The foundation of physiological stress monitoring was the registration of HRV using the 10T device Senim, which
includes the MAX30102 photoplethysmographic sensor. This integrated biomedical sensor combines the functions of a
pulse oximeter and PPG sensor, operating on the principle of differential light absorption at red (660 nm) and infrared (880
nm) wavelengths [44]. This configuration allows for the simultaneous recording of pulse waves and blood oxygen
saturation (SpO:) levels, which is particularly important for assessing the respiratory effects of air pollution. The sensor
provided valuable data on heart rate, RR intervals, and key HRV parameters (SDNN, RMSSD). It was attached to the
participant's wrist as shown in Figure 2, and recorded changes in blood volume associated with pulse waves, reflecting the
cardiovascular system's response to stress caused by polluted air. To minimize delays in real-time physiological
monitoring, the collected data were transmitted to the ESP-32 microcontroller. The SMD board of the 10T device Senim
and its design are shown in Figure 2.

[
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Figure 2.

10T device Senim for measuring heart rate variability (HRV) parameters: (a) Operation mechanism of PPG sensor on the finger for pulse wave
measurement. (b) ESP-32 microcontroller with PPG sensor.

To ensure high measurement accuracy and validate PPG data, a Polar H10 ECG sensor was attached to the participant's
chest following standard methodology, as shown in Figure 2. ECG sensors record the heart’s electrical activity, providing
reference HRV data, including time-domain parameters such as SDNN and RMSSD, as well as frequency-domain
parameters, such as low-frequency (LF) and high-frequency (HF) oscillations and their LF/HF ratio. Electrocardiographic
measurement is highly accurate and is considered the gold standard for HRV assessment, making it an essential tool for
validating data obtained from the PPG sensor [45]. Polar H10 sensor employs advanced noise suppression technologies and
eliminates interference caused by movement or changes in electrical contact with the skin. Both sensors, Polar H10 and
PPG GY MAX30102, were worn simultaneously, ensuring concurrent data recording and synchronization. The data
collected from both PPG and ECG sensors allowed for an assessment of measurement accuracy. The simultaneous use of
both devices ensured data comparability and provided reliable validation of heart rate parameters, which enabled accurate
interpretation of participants’ physiological responses under different environmental conditions.

To assess the accuracy of measurements and validate the data obtained using the MAX30102 PPG sensor, a
comparison was conducted with the Polar H10 ECG sensor. As shown in Table 2, the heart rate values and HRV features
from both sensors exhibit a similar dynamic pattern, which indicates a relatively high reliability of the 10T device Senim.
Data analysis revealed that the average correlation between values obtained with the Polar H10 Electrocardiographic
Sensor and the 10T device Senim was r = 0.87 (p < 0.001). However, some discrepancies in absolute values were observed,
particularly during the period 10:34:11-10:34:15, which may be attributed to motion artifacts or changes in sensor contact
with the skin. The mean difference between RR intervals recorded by both sensors was 1.2 + 3.4 ms, which falls within the
clinically acceptable margin of error. This confirms that the 10T device Senim can be a reliable alternative to traditional
electrocardiographic methods for assessing heart rate variability in environmental monitoring conditions. The results of
validating the 10T device Senim with a Polar H10 ECG sensor are shown in Table 2.
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Table 2.
Validation of the Polar H10 Electrocardiographic Sensor and IoT device Senim for Measurement.
Timestam Polar H10 ECG Sensor 10T device Senim
P HR HR RMSSD SDNN HR RR RMSSD SDNN
07.03.2025 10:34:11 90 | 666.67 45 35 90.73 666.67 43 34
07.03.2025 10:34:12 89 | 674.16 45 38 86.01 697.67 47 39
07.03.2025 10:34:13 88 | 681.81 50 40 88.3 681.81 45 38
07.03.2025 10:34:14 88 | 681.81 48 39 87.40 689.65 48 40
07.03.2025 10:34:15 89 | 674.16 44 37 87.66 689.65 46 39
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Figure 3.

Histograms of HRV Metrics by Location.

The histograms in Figure 3 display the distribution of six heart rate variability metrics across the three experiment
locations, providing insights into how the autonomic nervous system (ANS) responds to varying factors such as location or
stress. Heart rate variability (HRV) is a key indicator of the balance between the sympathetic and parasympathetic branches
of the autonomic nervous system (ANS). Lower HRV values are generally associated with increased sympathetic activity
or stress, whereas higher HRV values reflect stronger parasympathetic influence and relaxation [46]. By comparing HRV
data across different locations, this analysis highlights how environmental factors can influence autonomic regulation and
potentially impact overall health. During the study, signal processing was performed on the low-frequency component (LF
Signal) using the discrete wavelet transform (DWT). The main goal was to determine the optimal wavelet function order
and decomposition level for accurately extracting the respiratory rhythm. A comparison of different orders of Daubechies
wavelets (dbl, db2, db3, db4) showed that the most stable results were achieved with the fourth-order wavelet (db4), which
provided the best balance between noise reduction and preservation of physiologically significant information.

In Figure 4, the signal decomposition stages are presented: the original LF signal and its decomposition at the second
(Resp_A2), third (Resp_A3), and fourth (Resp_A4) approximation levels. At the fourth decomposition level (Resp_A4), a
peak detection method was applied, enabling highly accurate identification of the respiratory rhythm. The automatically
detected peaks, corresponding to respiratory cycles, are marked with red indicators. To verify the accuracy of the method, a
comparison between automatic and manual counting of respiratory cycles over 5 minutes was conducted, showing an error
of less than 4%, confirming the reliability of the detection.
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Figure 4.
Decomposition of the LF signal using DWT (db4) and comparison of approximation levels.

To understand the impact of external factors on the cardiovascular system, environmental parameters were monitored
alongside physiological measurements using the air monitoring system. This compact device provided a comprehensive
assessment of environmental conditions by measuring the concentration of fine particulate matter (PM.s), larger particles
(PM1o), and carbon dioxide (CO:), which were visually displayed on the device screen as shown in Figure 5. The monitor
uses a laser sensor based on the light-scattering principle to detect suspended particles ranging from 0.3 to 10 pm in
diameter, corresponding to PM,s and PMyo fractions, which are most relevant for evaluating the health effects of air
pollution. The measurement accuracy for particulate concentration is £10% within a range of 0 to 500 pg/ms3, allowing for
the reliable detection of even slight pollution fluctuations [43]. For carbon dioxide measurement, the device employs a
nondispersive infrared (NDIR) sensor with an accuracy of £50 ppm within a range of 400 to 5000 ppm [47]. The device's
high sensitivity enabled the detection of even minor changes in air composition under different test conditions.
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Figure 5.
Real-time monitoring of environmental data.

In Figure 5 the data from sensors were displayed on a dedicated website, eco.com.kz, which provides real-time updates
every 5 minutes. The key parameters shown include CO: levels, humidity, PM1o, and PMas, enabling efficient tracking and
analysis of air quality data. Users can select a specific date at the top right corner of the website to view the recorded
parameters for that day. Graphs for each parameter are available, which can be navigated through to observe variations over
time. These parameters are critically important for assessing the environmental impact on participants’ physiological states,
as air pollution and climatic factors can significantly influence the autonomic nervous system through mechanisms of
neuroinflammation, oxidative stress, and direct chemoreceptor stimulation [48]. Special attention was given to PMas
concentrations, as these particles can penetrate the alveolar-capillary barrier directly into the bloodstream, triggering
systemic inflammation and endothelial dysfunction processes closely linked to sympathetic nervous system activation and
stress responses [48]. The use of this sensor enabled the identification of correlations between air quality and changes in
cardiovascular system parameters across different environmental conditions.

2.4. Data Preprocessing

Stress levels were classified using Baevsky’s Stress Index (SI), which was calculated based on RR intervals. SI was
divided into three categories: low (0), medium (1), and high (2) stress levels, according to the following thresholds: a low-
stress level (0) corresponds to scores between 0 and 50, a medium stress level (1) covers scores from 51 to 150, and a high
stress level (2) includes scores above 150. This classification enabled the determination of stress levels based on
physiological data, which was then combined with environmental data to form a unified dataset. This dataset included both
physiological parameters and environmental factors such as PMas, PM1g, and SO,. These environmental factors were
recorded alongside the Stress Index to reflect the influence of external stressors on the autonomic nervous system.

The combined dataset served as the foundation for building machine learning models. To further enhance the dataset
and ensure good generalizability of the models across various conditions, synthetic data generation was employed.
Gaussian noise distribution was added to the cleaned dataset, introducing controlled variations in environmental parameters
(PM25, PM1g, CO2) and the Stress Index, which increased the original 30 data points to 990 instances.

Gaussian noise was selected as a data augmentation technique due to its demonstrated effectiveness in enhancing
machine learning performance on small datasets, particularly in clinical and environmental applications. It has been shown
to perform comparably to, and in some cases outperform, other augmentation methods, such as SMOTE and ADASYN,
while preserving data variability and structure. The use of Gaussian noise also supports improved model generalization and
reduces overfitting, especially when training data is limited [49, 50]. It was used to introduce controlled variations in
environmental parameters (PM2s, PM1o, CO2) and the Stress Index, increasing the original 30 data points to 990 instances.
The noise was generated with a mean of 0 and a standard deviation selected based on the real data distribution to ensure
realistic augmentation. This synthetic data generation process was designed to preserve the characteristics of the real
dataset, ensuring that the added noise reflected natural variability.

Gaussian noise can be mathematically represented as:
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X=u+o-z 1)

where x represents the noisy data, u is the mean of the data (which is 0 in this case), ¢ is the standard deviation determined
by the distribution of real data, and z is a random variable drawn from a standard normal distribution N (0,1).

The final dataset consisted of 990 records, including both real and synthetic data points, with key environmental
features such as PMig, PM25, CO-, and Stress Index. The introduction of synthetic data helped balance the dataset, making
it more representative of different stress levels and improving model generalization. These synthetic records preserved
realistic correlations with real data, particularly between the environmental features and the stress index, ensuring that the
models could generalize well across diverse conditions. This approach enabled improved assessment quality in the
subsequent machine learning models.

2.5. Data Analysis

This research section employed supervised machine learning classification algorithms to develop a model capable of
assessing a person's stress level based on various air quality parameters. During this phase, air parameters (CO2, PM25, and
PM1o) were extracted from real-time environmental monitoring data and used as input features. This preliminary process
enabled the creation of a larger number of air parameter samples for use in machine-learning classification. The model was
trained and evaluated using labeled stress index data derived from RR intervals to establish correlations between air
pollution levels and physiological stress responses. We applied grid search for hyperparameter tuning to identify the
optimal configuration for our model. This approach systematically explored a predefined parameter space to enhance
overall performance.

The model's performance was assessed using precision, recall, and F1-score metrics, which validated its effectiveness
in stress assessment. Precision represents the ratio of correctly classified positive instances to the total predicted positive
instances. Recall measures the proportion of actual positive instances that were correctly identified. The F1-score provides
a balanced measure by calculating the weighted average of precision and recall. Feature importance analysis was indicated
using the SHAP method [51].

2.5.1. Statistical Method
The stress level of individuals was determined using RR intervals of heartbeats, which were recorded at three different
locations. To quantify stress, Baevsky’s Stress Index (SI) was computed according to the formula (2): preferred.

§J = AMox100% @
2MyXMyDMy,

where the mode (M,) is the most frequent RR interval expressed in seconds [49]. The amplitude of the mode (AM,) was

calculated, using 50 ms bin width, as the number of the RR intervals in the bin containing the M,, expressed as a

percentage of the total number of intervals measured. The variability is reflected in M,,DM,, as the difference between the

longest (M,.) and shortest (M,,) RR interval values, expressed in seconds. The Sl is expressed as s™2.

2.5.2. Machine Learning Classification

Using an expanded dataset, DNN, XGBoost, Random Forest, and TabNet were used to assess the subject's stress level
based on air parameters. As a three-class classification problem, DNN, XGBoost, TabNet, and Random Forest were
employed due to their ability to handle complex patterns, non-linearity, and structured data effectively. The pipeline of
machine learning algorithms is presented in Figure 6.

Handle
missing

value
Data Hyperparameter Model Evaluation
. Data cleanin: L . Accuracy, Precision, SHAP Feature
Data collection TR o a Model training |—» Tuning > R(ecall F:YScore AUC Analysis
! (GridSearch) 1 \ N
processing ROC)
Feature

scaling
and encoding

Figure 6.
Machine Learning Pipeline.

DNN uncovers hidden interactions and complex dynamics in systems purely from observational data, allowing
analysis without relying on predefined models [52]. XGBoost and RF utilize ensemble learning to enhance the accuracy
and reliability of assessment [53]. Moreover, TabNet was incorporated due to its unique ability to perform interpretable
deep learning using a sequential attention mechanism [54].

Preprocessing operations included the normalization of CO., PM2s, and PMyo values to ensure all variables were
computed on the same scale, along with label encoding of the prediction target. As a result, categorical variables
representing stress levels were encoded into numerical values using a label encoder: '0' for low stress, '1' for medium stress,
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and "2' for high stress. The dataset consists of three features (CO2, PM2s, and PM1g) and a target variable representing stress
levels. The dataset was based on these three features and a target variable indicating stress levels (low, medium, and high).
The classification models were developed using Python and implemented with Scikit-learn (for RF), XGBoost (for
gradient boosting), PyTorch (for DNN), and PyTorch TabNet (for TabNet).
The performance of the machine learning models was assessed using evaluation metrics such as classification
accuracy, precision, recall, and the F1-score.

3. Results and Discussion
3.1. Measurements in the Experimental Environment

Environmental conditions were continuously monitored in real-time across the three experimental settings.
Temperature, humidity, and air pollutant levels were recorded during each session to assess potential external influences on
physiological responses. These measurements provided a standardized assessment of environmental variability and
guaranteed that each condition was characterized objectively. Differences in these parameters across environments
contributed to the varying physiological effects observed in HRV analysis. The recorded air parameters from the three
locations are presented in Table 3. Figure 7 illustrates Air Quality Index (AQI) values. The AQI range spans from 0 to 500
[55], where lower values represent good air quality with minimal health impact, and higher values indicate unhealthy to
hazardous air quality, posing significant health risks, especially for sensitive individuals. Monitoring AQI is crucial to

assess health risks, adopt preventive measures during high pollution periods, and evaluate the effectiveness of
environmental policies to improve air quality.

Table 3.
Air quality parameters were measured across the three locations.

Location Mean CO2, ppm Mean PMzs, pg/m? Mean PMio, pg/m3
Al-Farabi avenue 463.821 40.200 31.871
Botanical Garden 413.300 57.500 46.500
Laboratory 1478.975 31.325 24.324
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Figure 7.

Air Quality Index (AQI) values across the three different locations, based on sensor data collected during the experiment.

The higher AQI in the botanical garden, as shown in Figure 7, was primarily due to increased humidity in Table 4,
which played a significant role in trapping particulate matter (PM.s and PMg). Vegetation contributes to higher humidity
through transpiration and reduced air circulation, leading to moisture accumulation in the air [56]. This excess moisture
causes fine particulate matter to absorb water, increasing its mass and concentration in the atmosphere. As a result, the
botanical garden exhibited higher levels of PM.s and PM1o, Which directly impacted the AQI.

Table 4.

Mean Humidity Levels Across Different Locations.

Location Mean Humidity, %
Al-Farabi avenue 48.33 +5.08
Botanical Garden 83.54 +0.97
Laboratory 32.61+£4.11
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3.2. Influence of Environmental Exposure on HRV

HRV data were collected for 5 minutes in each environment to track fluctuations in RR intervals as indicators of
autonomic nervous system activity. Participants' RR intervals varied depending on the surrounding environment, which
demonstrated the body's physiological adaptation to external stimuli. The observed differences in RR interval variability
suggest that external environmental factors influence autonomic activity, even when participants maintain a stable seated
position and a natural breathing pattern. The results support the hypothesis that environmental conditions affect nervous
system regulation. The calculations for each participant were detected, as shown in Figure 8.

Stress Index of Volunteers Across Locations

400 - o L
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Stress Index
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W
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Al-Farabi Botanical Laboratory
Location

Figure 8.
Stress index of all volunteers across locations.

The comparison of mutual information between features in the original and generated air parameters datasets is
illustrated in Figure 9. Mutual information quantifies the dependency between variables and helps assess how well the
generated data preserves relationships present in the original dataset. By comparing these correlation matrices, we evaluate
the similarity in feature interactions and determine the effectiveness of data generation in maintaining underlying patterns.
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Figure 9.
Correlation matrix between Stress index and environmental parameters for: (a) Original data. (b) Synthetic data.

3.3. Classification of Stress Level Based on Machine Learning
3.3.1. Data Augmentation

The dataset was expanded by generating synthetic data using Gaussian noise. Figure 10 presents a comparison of the
original dataset and the generated dataset, visualized using Kernel Density Estimation distribution. This analysis used CO2,
PMzs, and PMyo as features. The data generation process effectively preserved these air quality parameters' underlying
patterns and relationships. By the final training stage, the synthetic data closely mirrored the distribution of the original
dataset across all features, as depicted in Figure 10. However, synthetic data generation may not perfectly replicate the
original dataset or fully capture intricate feature relationships. This variation is not necessarily a drawback, as some level of
divergence is expected. Nevertheless, it is crucial that the generated data retains the statistical properties and dependencies
between features to ensure its reliability and applicability.
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Figure 10.
Comparison of the features in the original and generated datasets.
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3.3.2. Machine Learning Classification

The synthetic data samples were merged with the original training data to enhance balance and expand the training
dataset for the machine learning classifiers. Machine learning models are used to assess subjects' stress levels (low,
medium, or high) based on air parameters. Specifically, stress levels are classified as low for values between 0-50, medium
for values between 51-150, and high for values of 151 and above. The performance results of the DNN, XGBoost, RF, and
TabNet algorithms are summarized in Table 5. After training the ML models, the average evaluation metric values for each
classifier were computed. All classifiers demonstrated strong performance, with the XGBoost model achieving the highest
accuracy of 91.92%.

The confusion matrices of the assessment process, using the air parameters, are shown in Figure 11. The XGBoost
model achieved a precision of 91.82% in assessing stress levels, with an F1-score of 90.42% and a recall of 89.28%,
indicating strong overall classification accuracy.
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Confusion matrix using the air parameters for XGBoost.
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Figure 12.

Model performance evaluation using the air parameter: (a) Receiver operating characteristic (ROC)
curve for classification assessment. (b) Area under the curve (AUC) comparison during training and
testing for XGBoost.

The ROC curves, along with the AUC values, are shown in Figure 12, respectively. The Area Under the Curve (AUC)
values obtained during training and testing provide a robust indication of the model’s discriminative ability. The training
AUC of 0.9945 suggests that the model has learned the underlying patterns in the data exceptionally well, achieving near-
perfect classification. Meanwhile, the test AUC of 0.9786 demonstrates that the XGBoost model generalizes well to unseen
data, with only a slight decrease in performance. The minimal gap between training and test AUC values suggests that
overfitting is not a significant concern, indicating a well-regularized model that maintains high predictive power.

Table 5.

Accuracy, precision, recall and F1-score values obtained for ML classifiers in the prediction of stress levels based on air parameters.
Evaluation metrics DNN XGBoost RF TabNet
Accuracy 90.60% 91.92% 89.9% 83.89%
F1-Score 0.8767 0.9042 0.8944 0.7949
Precision 0.8725 0.9182 0.8816 0.8825
Recall 0.8828 0.8928 0.9110 0.7673

Table 5 presents a comparison of the performance of four machine learning models: DNN, XGBoost, Random Forest,
and TabNet in a classification task. Four standard evaluation metrics were used to assess classification quality: Accuracy,
F1-Score, Precision, and Recall. The highest Accuracy (91.92%) and F1-score (0.9042) were achieved by the XGBoost
model, demonstrating its overall effectiveness and balanced performance between precision and recall. The results indicate
that ensemble methods (XGBoost, Random Forest) outperform both the deep neural network architecture (DNN) and the
specialized model for tabular data (TabNet) in the context of this task.

3.3.3. Feature Importance Analysis Using SHAP

To assess the contribution of different air parameters to the evaluation of stress levels, SHapley Additive exPlanations
(SHAP) were used to interpret the XGBoost model. The SHAP summary plot, Figure 13, provides insights into the relative
importance of each environmental factor in determining stress levels.

Among the features analyzed, PM.s emerged as the most influential factor, indicating that fine particulate matter had
the strongest impact on stress assessment. This was followed by PM1o, suggesting that larger airborne particles also played
a significant role in affecting physiological responses. CO> ranked third in importance, showing a moderate influence on
stress levels.

These findings highlight the substantial role of air quality in physiological stress responses, with fine particulate matter
(PM_s and PMsg) being more critical than CO; in assessing variations in stress levels. This suggests that exposure to higher
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levels of air pollutants may contribute more strongly to stress-related physiological changes than carbon dioxide
concentration.

PM2.5
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Figure 13.
Feature Importance Analysis Using SHAP.

Emerging research consistently supports a strong link between air pollution and physiological stress responses. Fine
particulate matter such as PM2s and PMzo has been shown to induce oxidative stress, inflammation, and redox signaling
disruptions, all contributing to biological stress. These pollutants can penetrate deeply into the body and affect neurological
and systemic functions through mechanisms including neuroinflammation and epigenetic changes [56-58]. This aligns with
our finding that particulate matter significantly impacts autonomic nervous system activity and stress levels, highlighting
the importance of air quality monitoring in stress assessment and public health efforts.

There were some limitations in the current research. Wind speed and vegetation type in the botanical garden were not
measured or included in the analysis, which might have influenced the environmental data. Before the experiments, only
short-term lifestyle factors such as 24-hour dietary restrictions were considered, leaving out other important aspects of
participants' routines.

4. Conclusion

In this study, air quality parameters and heart rate variability (HRV) parameters were collected in real-time, while RR
intervals were simultaneously recorded from 10 volunteers using PPG in three different locations. The obtained results
confirmed the significant impact of environmental factors on physiological responses, particularly stress levels,
successfully demonstrating this relationship. A detailed HRV analysis revealed variations in autonomic nervous system
activity in response to different environmental conditions, further reinforcing the link between air quality and physiological
stress markers. These findings contribute to the growing body of research on environmental stressors and their effects on
human health. Notably, the XGBoost classification algorithm achieved the highest assessment accuracy of 91.92%,
confirming its effectiveness in stress classification based on air quality parameters. SHAP feature analysis identified PM3s
as the most significant environmental factor influencing HRV and stress levels. Integrating HRV and air quality data in an
10T system could enable city dwellers to receive real-time alerts during high pollution periods, helping them avoid outdoor
activities or modify routines. Wearable-based feedback systems could even suggest breathing exercises or stress-relief
actions, making urban living healthier and more sustainable.

Future research will address current limitations by measuring wind speed and identifying vegetation types in the study
environment. It will also consider long-term lifestyle factors such as sleep quality, eating habits, and other behavioral
patterns. Additionally, plans include increasing the volume of real data collected and exploring further data augmentation
strategies to test and enhance the robustness of the current approach.

As part of this work, the developed machine learning models will be integrated into an intelligent and adaptive
environment that dynamically responds to users' stress levels and air quality conditions. This integration will improve real-
time stress monitoring and mitigation strategies, potentially enhancing overall well-being. Further research in
cardiovascular diseases (CVD) will investigate stress as a key contributing factor to predicting CVD risks. The research
will include participants across different age groups, with continuous 24-hour HRV and air quality monitoring conducted
for each individual to capture comprehensive physiological responses to environmental stressors. Analyzing the interplay
between chronic stress and cardiovascular risk factors will provide deeper insights into preventive measures and
personalized medical interventions, ultimately contributing to advancements in stress management and cardiovascular
health research.
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