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Abstract 

Cloud computing has indelibly reshaped contemporary IT infrastructure by offering scalable and economically viable 

resource provisioning. Infrastructure-as-a-Service (IaaS), a key component, provides flexible computing resources, yet 

optimizing their allocation balancing energy, latency, and provisioning costs remains a complex challenge. This research 

introduces a user-driven Infrastructure-as-a-Service (IaaS) optimization framework, leveraging Mixed Integer Linear 

Programming (MILP). This framework is meticulously designed for cost-efficient resource management and performance-

aware virtual machine (VM) placement. A core feature is its facilitation of dynamic user-configurable parameters, 

specifically cost-prioritization weights (α, β, γ), endowing it with significant adaptability to diverse operational requisites. 

Through comprehensive simulation studies involving systematic variation of these weights and workload scaling, the 

framework’s efficacy is demonstrated in optimizing VM placement across distributed servers. This approach achieves 

substantial improvements in resource utilization and cost management while rigorously adhering to performance 

constraints. Ten distinct comparative analyses visually articulate the inherent trade-offs in this optimization landscape. 
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1. Introduction 

The relentless expansion of digital services and data-intensive applications has unequivocally solidified cloud 

computing’s stature as the preeminent paradigm for agile, on-demand IT infrastructure delivery. This transformative 

technology underpins a significant portion of modern digital enterprise, offering unprecedented scalability and elasticity in 

resource provisioning [1]. Among its variegated service models, Infrastructure-as-a-Service (IaaS) constitutes a 

foundational stratum, empowering users with access to elemental computing capabilities such as virtual machines (VMs), 

persistent storage, and configurable networks, consequently abstracting the inherent complexities of direct physical 

hardware stewardship [2]. For the entities orchestrating these expansive, often geographically federated ecosystems, 

operational excellence ascends to paramount importance. The administration of potentially myriad physical servers, 

dispersed across numerous data centers interconnected by high-velocity network backbones, introduces profound logistical 

and economic intricacies. Central to navigating this multifaceted environment is the Virtual Machine Placement (VMP) 

predicament: the judicious strategic allocation of a multitude of user-solicited VMs onto the available physical server (PS) 

substrate [3]. 

This allocation endeavor transcends rudimentary resource matching; it represents a critical fulcrum influencing the 

provider’s aggregate operational expenditure profile and the perceived quality of service [4]. The total cost materializes as a 

complex amalgamation of diverse contributing factors. Energy consumption emerges as a substantial constituent, driven by 

both active computation and significant quiescent power draw in large server farms, making energy-aware VMP a critical 

research area [5]. Network latency, engendered by the physical separation between data centers housing 

intercommunicating VMs or between VMs and their designated end-users, directly impinges upon application 

responsiveness and user experience [6], thereby constituting an implicit economic burden necessitating meticulous 

governance. Furthermore, the unceasing operation and provisioning of hardware elements contribute ancillary costs 

attributable to component wear, routine maintenance overheads, and the network bandwidth appropriated by VM migration 

activities or inter-data center communication [7]. An efficacious minimization of this composite cost structure mandates a 

sophisticated, multi-objective approach capable of arbitrating these frequently conflicting imperatives [8]. 

The optimization landscape [9] is further circumscribed by exacting operational mandates. Each physical server 

possesses inherently finite capacities for indispensable resources encompassing CPU cycles (C), Random Access Memory 

(M), data storage (S), and network bandwidth (B), which cannot be oversubscribed without precipitating performance 

degradation or service instability. Concurrently, every individual VM necessitates an unambiguous, singular assignment to 

one physical server within the distributed infrastructure, a fundamental tenet of virtualization management. Quality-of-

Service (QoS) assurances [10] frequently translate into explicit latency thresholds, stipulating that communication delays 

between specified VM cohorts or from VMs to defined geographical locales must remain beneath predetermined maxima 

(Lmax) [11]. Moreover, the imperative of service continuity compels adherence to stringent reliability criteria, thereby 

circumscribing the acceptable probability of service disruptions (Pthreshold) emanating from server over-utilization or 

correlated failure events within a single geographic or fault domain. The combinatorial explosion inherent in assigning 

potentially thousands of VMs (m) to hundreds or thousands of physical servers (n), while simultaneously respecting these 

heterogeneous constraints and minimizing a multi-component cost function, presents a computationally formidable 

undertaking classified as NP-hard [12]. Naive heuristics or simplistic greedy algorithms may yield markedly suboptimal or 

even infeasible allocation schemas within such intrinsically complex operational scenarios [13]. 

Addressing this multifaceted optimization challenge with requisite rigor necessitates a robust, mathematically 

principled methodology. This manuscript proffers a framework architected around Mixed Integer Linear Programming 

(MILP), an optimization technique of considerable potency, particularly adept at resolving problems characterized by 

discrete decision variables (such as the binary determination of assigning a specific VM to a particular server) in 

conjunction with continuous variables and linear constraint systems [14]. By formally articulating the VM placement 

conundrum as an MILP problem, a systematic exploration of the vast solution space becomes feasible, enabling the 

identification of allocations that demonstrably minimize the defined total operational cost, encompassing pivotal energy, 

latency, and provisioning elements [15]. The model explicitly incorporates constraints reflecting finite resource capacities, 

inviolable VM assignment uniqueness, pertinent energy consumption characteristics (linearized where appropriate for 

MILP tractability), maximum permissible latency figures, and overarching system reliability targets. This integrated 
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paradigm aims to furnish IaaS providers with a quantifiable and robust instrument for refining their resource allocation 

strategies, thereby fostering enhanced cost-efficiency, unwavering performance standards, and promoting sustainable 

energy consumption patterns within their large-scale, distributed infrastructures [16]. 

The rapid proliferation of cloud computing services has instigated an exponential surge in the demand for 

computational resources, rendering the efficient allocation of VMs across the expansive cloud infrastructure a pivotal and 

pressing challenge [11]. Conventional allocation methodologies often depend on static policies that demonstrate limited 

adaptability to fluctuating workload dynamics and evolving resource constraints. Such methods can precipitate excessive 

energy dissipation, suboptimal resource utilization, inflated operational expenditures, and augmented latency in service 

delivery pipelines. A significant lacuna in extant optimization models is their constrained flexibility in seamlessly 

incorporating user-defined constraints and preferences, a limitation that curtails their practical applicability within 

heterogeneous, real-world cloud deployment contexts [17]. This research endeavors to surmount these limitations through 

the development of an advanced optimization framework, one that dynamically allocates VMs while concurrently 

minimizing operational costs and rigorously upholding stipulated performance benchmarks. 

This research presents a novel IaaS optimization framework that synergistically integrates user-defined constraints 

with the mathematical rigor of Mixed Integer Linear Programming (MILP) to achieve demonstrably efficient VM allocation 

within contemporary cloud environments. The architected framework empowers users to articulate specific trade-offs 

among cost, latency, and performance metrics by adjusting weighting parameters (α, β, γ) for energy, latency, and 

provisioning costs, respectively. This renders it exceptionally adaptable to a diverse array of cloud deployment scenarios 

and bespoke operational objectives. Distinct from many prevalent models, our approach comprehensively considers 

dynamic server capacities, inherent workload variations, and critical energy efficiency parameters, thereby furnishing an 

optimized allocation strategy that markedly enhances overall resource utilization. Extensive experimental analysis, detailed 

herein, demonstrates the framework’s effectiveness in reducing operational costs, balancing server loads, and improving 

overall system performance across various simulated conditions. 

The remainder of this paper is organized as follows: Section II surveys pertinent prior research. Section III details the 

system model and formalizes the optimization problem. Section IV describes the MILP-based optimization framework and 

the allocation algorithm. Section V presents the comprehensive simulation setup, defines the performance metrics, and 

discusses the results derived from systematic experimentation. Finally, Section VI concludes the paper and suggests 

avenues for future investigation. 

 

2. Related Work 
The challenge of Virtual Machine Placement (VMP) in cloud data centers, aiming to optimize resource utilization, 

minimize operational costs, and enhance performance, has been a subject of extensive research, yielding a diverse spectrum 

of proposed solutions [18, 19]. Existing approaches can be broadly categorized into heuristic/metaheuristic methods, exact 

optimization techniques, and learning-based strategies. 

Heuristic and metaheuristic algorithms have been widely explored due to their capacity to find near-optimal solutions 

within computationally tractable timeframes for large-scale VMP instances [17, 20]. Genetic Algorithms (GAs) have been 

applied to minimize energy consumption and resource wastage [21] while Simulated Annealing (SA) has been used to 

escape local optima in search of better placements [22]. Ant Colony Optimization (ACO) [23] and Particle Swarm 

Optimization (PSO) [23, 24] represent other prominent bio-inspired techniques adapted for VMP, often excelling in 

exploring vast solution spaces. Various First-Fit (FF) and Best-Fit (BF) derived heuristics, such as First-Fit Decreasing 

(FFD) for resource packing, are also common due to their simplicity and speed [25, 26]. However, a general limitation of 

these methods is the lack of guaranteed optimality and potential sensitivity to parameter tuning [27]. More critically for our 

work, many heuristic approaches, while effective for general cost or energy reduction, frequently lack sophisticated 

mechanisms to incorporate fine-grained, user-specified constraints or to dynamically adapt to varying preferences regarding 

the trade-offs between cost, latency, and performance without significant re-engineering or ad-hoc modifications [28, 29]. 

Exact optimization methods, predominantly based on Integer Linear Programming (ILP) or Mixed Integer Linear 

Programming (MILP), offer the advantage of finding provably optimal solutions for well-defined VMP problem 

formulations [30]. Numerous studies have formulated VMP as an MILP problem, targeting objectives such as minimizing 

energy consumption [31], operational costs [26, 32], resource fragmentation [33], or a combination thereof. Some MILP 

models also incorporate network-awareness [34]. While powerful in their ability to guarantee optimality, the primary 

impediment of exact methods is their computational complexity (NP-hardness), which can render them intractable for very 

large problem instances or unsuitable for highly dynamic, real-time environments where placement decisions must be made 

rapidly [29, 35]. Our work leverages MILP for its optimality guarantees but focuses on a formulation that strategically 

incorporates user-driven parameters to guide the optimization towards solutions that reflect specific operational priorities, 

aiming for applicability in strategic planning rather than instantaneous tactical decisions. 

More recently, machine learning (ML) and reinforcement learning (RL) techniques have gained significant traction for 

dynamic VM allocation and resource management in cloud environments [36, 37]. RL agents, such as those based on Q-

learning or Deep Q-Networks (DQN), can learn optimal placement policies through interaction with the cloud environment, 

adapting to changing workloads and resource availability without explicit system modeling [38]. Supervised learning 

models can be used for workload prediction to inform placement decisions [39] while unsupervised learning might help in 

server clustering or anomaly detection. These approaches show considerable promise for handling the inherent dynamism 

and uncertainty of cloud systems. However, they often necessitate substantial volumes of training data and extensive 

training periods [40]. Furthermore, ensuring that learned policies strictly adhere to all hard operational constraints and user-
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specific Quality of Service (QoS) requirements can be challenging [41]. The ”black-box” nature of some complex ML 

models can also obscure the rationale behind specific placement decisions, which can be a concern for providers requiring 

transparent and auditable allocation processes [42, 43]. 

Several frameworks have attempted to address multi-objective optimization in VMP, recognizing the conflicting nature 

of goals such as cost reduction, performance enhancement, and energy saving [44]. These often involve transforming 

multiple objectives into a single objective function using scalarization techniques, such as weighted sum methods [42] or 

employing Pareto optimality concepts to find a set of non-dominated solutions [45]. While valuable, the configuration of 

these weights in scalarization methods often requires domain expertise or can be static, limiting adaptability. Similarly, 

selecting a single solution from a potentially large Pareto front still requires a higher-level decision-making process that 

may not be easily automated according to dynamic user preferences [46]. 

Our proposed framework distinguishes itself by architecting the MILP model to be directly and dynamically influenced 

by user-configurable parameters (specifically, the weights α, β, γ for energy, latency, and provisioning costs). This explicit 

integration allows for a more transparent and adaptable optimization process compared to static heuristics, complex ML 

models where fine-grained preference control is less direct, or multi-objective methods where weight setting is often a pre-

optimization step. It builds upon the strengths of MILP for finding optimal solutions within the defined model while 

mitigating the rigidity of traditional formulations by embedding user preferences directly into the objective function, 

guiding the decision-making core, thereby facilitating a practical approach to user-driven resource allocation. 

 

3. System Model and Problem Formulation 
This section delineates the architectural model of an IaaS provider’s infrastructure and subsequently formalizes the 

VM allocation problem as an optimization task. 

 

3.1. Network and Resource Model 

An IaaS provider’s infrastructure is conceptualized as a distributed system comprising multiple Data Centers (DC), 

interconnected via a high-speed, wide-area backbone network. Each data center DCk ∈ DC hosts a collection of Physical 

Servers (PSk), which in turn execute the Virtual Machines (VMs) allocated to various users. For simplicity in this 

formulation, we consider a global set of physical servers. Key components and notations: 

• PS = {PS1,PS2,...,PSn}: The global set of n physical servers. 

• VM = {V M1,V M2,...,V Mm}: The set of m virtual machines requested by users that require placement. (Changed k to 

m for VM count to avoid conflict with k often used as an index) 

• R = {C,M,S,B}: The set of critical resource types considered: CPU (C), Memory (M), Storage (S), and network 

Bandwidth (B). 

• Rj,r
avail: The available capacity of resource r ∈ R on physical server PSj. 

• Ri,r
req: The required amount of resource r ∈ R by virtual machine V Mi. 

 

3.2. Cost Components 

The total operational cost targeted for minimization is a composite function of energy consumption, interVM or VM-

to-user latency implications, and general provisioning overheads. User-driven parameters (α,β,γ) are introduced as weights 

to modulate the relative importance of these base cost components in the objective function. 

• Ebase,j: Base energy cost factor associated with PSj. 

• Lbase,j: Base latency cost factor associated with PSj. 

• Pbase,j: Base provisioning cost factor associated with PSj. 

These base factors represent raw costs per server (or per VM hosted on that server, depending on interpretation) before 

weighting. 

 

3.3. Decision Variables 

The primary decision in the VMP problem is the assignment of each VM to a specific PS. 

• xij: A binary variable defined as: xij = 1, if V Mi is allocated to PSj. xij = 0, otherwise. 

 

3.4.. Objective Function (Cost Minimization) 

The primary objective is to minimize the total weighted operational cost. The cost is considered per VM assignment to a 

server. 

  (1) 

Here, α,β,γ are user-defined weights such that α,β,γ ∈ [0,1] and typically α + β + γ = 1 (though not strictly necessary if 

costs are normalized). 

 

3.4. Constraints 

The allocation must satisfy several operational and resource constraints. 

1) Resource Capacity Constraint: The total resources consumed by VMs allocated to any physical server must not 

exceed its available capacity for each resource type r ∈ R. 
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  (2) 

2) VM Placement Constraint: Each virtual machine V Mi must be assigned to exactly one physical server. 

  (3) 

3) Energy Consumption Considerations (Informing Ebase,j): The base energy cost Ebase,j can be derived from server 

power models. A common model for server PSj’s power consumption Pconsj is: 

 Pconsj = Pidlej + (Pmaxj − Pidlej) × Uj (4) 

where Pidle and Pmax are the idle and maximum power consumption of PSj, and Uj is its utilization. Ebase,j could represent 

an average incremental power draw per VM or the cost of the server being active. 

4)  Latency Constraint (Implicit/Explicit): Latency considerations are primarily incorporated through Lbase,j and its 

weight β. Explicit constraints, e.g., Leffective ≤ Lmax vmi for specific VMs, could be added if required, potentially increasing 

model complexity. 

5)  Reliability Constraint (Conceptual): Reliability (Pfailure ≤ Pthreshold) is often managed by limiting server utilization 

(proxy for failure risk) or ensuring replica placement in different fault domains, translating to additional constraints if 

explicitly modeled. 

6) Maximum VMs per Server Constraint: A practical limit on the number of VMs per server, Vmaxj, can be imposed: 

  (5) 

 

4. MILP-Based Optimization Framework 
The core of the proposed IaaS allocation framework is an MILP model designed to solve the VM placement problem 

efficiently, considering the multifaceted objectives and constraints. Figure 1 presents the high-level architecture of this 

framework, outlining the key components and their interactions. The subsequent subsections detail the optimization 

problem formulation and the algorithmic approach. 

 

4.1. Optimization Problem Formulation Summary 

We formulate the VM allocation as an MILP problem. The objective is to minimize Equation 1, subject to: 

1) Resource capacity constraints (Equation 2) 

2) VM placement constraints (Equation 3) 

3) Maximum VMs per server constraints (Equation 5) 

4) (Implicitly) Energy efficiency, latency, and reliability considerations via weighted cost components and potential 

additional constraints. 

The user-driven nature is realized through the selection of weights (α,β,γ) and specific constraint bounds (e.g., Vmaxj). 
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Figure 1. 

High-level architecture of the proposed IaaS Optimization Framework. 

 

4.2. Algorithm Overview 

The process of optimizing VM allocation is outlined in Algorithm 1. This algorithm encapsulates the setup, MILP 

definition, solution, and result extraction. 

 

4.3. Implementation Details 

The MILP model is implemented using Python with the PuLP library, interfacing with the CBC solver. The framework 

allows for automated execution of multiple optimization runs by varying input parameters, facilitating comprehensive 

experimental analysis. 

 

5. Experimental Evaluation 
To validate the efficacy and adaptability of the proposed IaaS optimization framework, comprehensive simulation 

experiments were conducted. This section details the experimental setup, key performance metrics, and discusses the 

insights derived from the generated results. 

Algorithm 1 IaaS Optimization Framework Algorithm (Conceptual) 

1: Input: Set of physical servers PS with Rj,r
avail; Set of virtual machines VM with Ri,r

req; Max VMs per server 

Vmaxj; Base cost factors Ebase,j,Lbase,j,Pbase,j; User-defined cost weights α,β,γ. 

2: Initialization: 

3: Define server capacities and VM requirements. 

4: Define base cost factors for each PSj. 

5: Define MILP Optimization Problem: 
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6: Create binary decision variables xij. 

7: Define the objective function (Equation 1) using α,β,γ. 

8: Add constraints (Equations 2, 3, 5, and others as needed). 

9: Solve MILP Problem: 

10: Utilize a standard MILP solver (e.g., CBC, Gurobi, CPLEX via PuLP). 

11: Output: 

12: Retrieve optimal VM-to-server assignments (  

13: Calculate performance metrics (total cost, component costs, utilization, active servers, solve time). 14: 

Return: Optimized allocation results and performance metrics. 

 

5.1.  Simulation Setup 

The simulation environment models a cloud provider’s infrastructure. 

• Infrastructure and workload generation: Physical server capacities (Rj,r
avail) for CPU, memory, storage, and 

bandwidth, as well as VM requirements (Ri,r
req), were generated randomly within realistic ranges (e.g., server CPUs: 

40-120 units, VM CPUs: 1-16 units). Base cost factors (Ebase,j,Lbase,j,Pbase,j) for each server were also randomly 

generated. A fixed seed was used for generating this base data in specific experimental sets to ensure comparability when 

other parameters (like weights) were varied. 

• Experimental Scenarios: Two main sets of experiments were conducted: 

1) Experiment 1 (Weight Variation): For a fixed base scenario (e.g., 20 servers, 100 VMs), the cost weights (α, β, 

γ) were systematically varied across predefined combinations (e.g., focusing on energy (α = 1), latency (β = 1), 

provisioning (γ = 1)), balanced approaches, and dominant-factor approaches. 

2) Experiment 2 (VM Load Scaling): Using balanced cost weights (e.g., α=β=γ=1/3), the number of VMs was 

varied (e.g., 50, 75, 100, 125, 150 VMs) while keeping the number of servers fixed, to assess scalability and 

performance under different load intensities. Server/VM data was re-generated for each distinct problem size in 

this experiment set, using a systematically varied seed. 

• Solver: The PuLP library with the CBC solver was used for all MILP optimizations. 

 

5.2. Performance Metrics 

The framework’s performance was evaluated using the following key metrics, collected from each optimization run: 

• Total Weighted Cost: The objective function value (Equation 1). 

• Actual Cost Components: The sum of base energy, latency, and provisioning costs for the placed VMs, each 

multiplied by their respective global weight (αPEbase,jxij, etc.). 

• Number of Active Physical Servers: Count of servers hosting at least one VM. 

• Average Server Utilization: For CPU, Memory, etc., across active servers. 

• Solver Time: Wall-clock time taken by the MILP solver. 

• VMs per Server Distribution: For analyzing load balancing characteristics. 

 

5.3. Results and Discussion 

The simulation results are presented through ten comparative graphs, designed to offer deep insights into the system's 

behavior and the trade-offs involved in IaaS resource allocation. 

 

l : Igy W igh ( l h ) 

 
Figure 2. 

Impact of Energy Weight (α) on Total Weighted Cost and Actual Energy Cost Component. 
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 l : i gy W igh (l h ) 

 
Figure 3. 

Number of Active Servers vs. Energy Weight (α). 

  

Figure 2 illustrates the relationship between the energy cost weight (α) and both the total weighted operational cost and 

the actual energy cost component. As α increases, the optimization prioritizes placements with lower base energy costs, 

typically leading to a decrease in the actual energy cost component. The total weighted cost’s behavior depends on how this 

shift impacts the latency and provisioning components. Figure 3 demonstrates the impact of α on the number of active 

physical servers. A higher α is expected to encourage server consolidation to turn off more servers, reducing overall idle 

power, thus potentially decreasing the number of active servers. 

The scalability of the framework is assessed in Figures 4 and 5. Figure 4 plots the total weighted cost as the number of 

VMs increases under a balanced weighting scheme. This shows how efficiently the system can accommodate growing 

demand. Figure 5 presents the corresponding solver time, which is critical for understanding the practical limits of applying 

the MILP approach to larger problem instances. An increase in solver time with problem size is characteristic of MILP. 

Figure 6 provides a comparative bar chart of the total weighted costs achieved under distinct high-level strategic 

priorities (e.g., energy-focused with α = 1, latency-focused with β = 1, balanced with α = β = γ = 1/3). This highlights the 

extent to which overall costs can vary based on user-defined objectives. 

Resource utilization efficiency is depicted in Figure 7, showing average CPU and memory utilization on active servers 

as the number of VMs scales. This indicates how well the framework packs VMs while respecting capacity constraints. 

Figure 8 presents a scatter plot illustrating the trade-off between the actual energy cost component and the actual latency 

cost component. Each point typically represents a run with different (α,β,γ) weights, revealing the achievable balance 

between these competing objectives. 

 

l : l ili y wi h 

 
Figure 4. 

Total Weighted Cost vs. Number of VMs (Scalability with Balanced Weights). 
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Figure 5. 

Solver Time vs. Number of VMs (Scalability with Balanced Weights). 

 

The distribution of VMs across active servers for different weighting strategies is compared in Figure 9 using box 

plots. This reveals how different optimization goals affect load balancing; for example, a strong energy focus might lead to 

some servers being densely packed while others are off, compared to a balanced approach. Figure 10 complements Figure 3 

by showing how the number of active servers scales specifically with increasing VM load under a consistent (balanced) 

weighting strategy. 

Finally, Figure 11 provides another view on computational scalability by plotting solver time against a combined 

problem size metric (e.g., product of VMs and servers). This helps generalize the understanding of how computation time 

grows with the overall complexity of the allocation problem. 

Collectively, these results demonstrate the framework’s capability to achieve optimized VM placements according to 

user-specified priorities and underscore the inherent trade-offs in cloud resource management. The MILP approach, while 

computationally intensive for very large instances, provides optimal solutions for the given model, offering valuable 

benchmarks and insights for strategic planning. 

 

6. Conclusion and Future Work 
This research presents a novel Infrastructure-as-a-Service (IaaS) optimization framework, anchored by Mixed Integer 

Linear Programming, which adeptly navigates the complex interplay of cost efficiency, system performance, and energy 

consumption. By systematically integrating user-defined cost-weighting parameters (α, β, γ) directly into the optimization 

core, the framework offers a significant advancement in adaptable and precise VM allocation. The proposed approach 

facilitates dynamic parameter selection, enabling IaaS providers to tailor resource provisioning strategies to diverse and 

evolving operational requirements. Comprehensive simulated evaluations, varying cost priorities and workload scales, have 

demonstrated considerable potential for reductions in operational expenditures and enhancements in resource utilization 

while rigorously satisfying performance and reliability mandates, as evidenced by the detailed analysis of ten comparative 

graphical results. 

 

 l : l i W igh i g gi 

 
Figure 6. 

Comparison of Total Weighted Cost for Key Weighting Strategies (e.g., Energy-Focused, 

Latency-Focused, Provisioning-Focused, Balanced). 
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Figure 7. 

Average Server Resource Utilization (CPU, Memory) vs. Number of VMs. 

 

Future research endeavors will extend this foundation in several promising directions. The exploration of deep 

reinforcement learning models for predictive, real-time VM allocation and dynamic workload adaptation presents a 

compelling avenue, potentially synergizing with the MILP framework for hybrid decision-making (e.g., RL for rapid 

tactical adjustments, MILP for periodic strategic re-optimization). Incorporating more sophisticated models for uncertainty 

in resource demands and availability, as well as dynamic pricing schemes, could further enhance the robustness and 

economic viability of the allocation strategies. Investigating advanced multi-objective optimization techniques beyond 

simple weighting, such as lexicographical optimization, goal programming, or explicit Pareto front generation, could 

provide more nuanced control over conflicting objectives. Furthermore, extending the framework to encompass broader 

aspects of the cloud stack, such as Software-Defined Networking (SDN) configurations for latency-sensitive traffic or 

storage tiering in conjunction with VM placement, will be crucial for holistic IaaS optimization. The development of 

efficient decomposition techniques or specialized heuristics guided by MILP insights remains important for addressing 

extremely large-scale instances where exact MILP solutions become intractable within operational timeframes. 

The dynamic allocation of VMs in cloud environments necessitates robust attack detection mechanisms to mitigate 

security threats such as VM sprawl, side-channel attacks, and unauthorized resource access. Malicious actors may exploit 

vulnerabilities in static allocation policies to launch denial-of-service (DoS) attacks or manipulate workloads, leading to 

energy inefficiencies and degraded performance [47]. Integrating real-time anomaly detection algorithms, such as machine 

learning-based intrusion detection systems (IDS), is essential for enhancing cybersecurity measures [48] can enhance threat 

identification by analyzing workload patterns and flagging deviations indicative of cyberattacks. Additionally, software-

edge authentication plays a critical role in securing distributed cloud infrastructures [49] by verifying the legitimacy of edge 

devices and users before granting access to computational resources, and security can be significantly enhanced. 

Techniques such as zero-trust authentication and blockchain-based identity verification can ensure secure VM migrations 

and prevent unauthorized provisioning. Embedding these security measures within the optimization framework allows 

cloud providers to achieve cost-efficient resource allocation while maintaining stringent security and performance 

standards. This approach addresses the limitations of conventional static methods, ensuring a more dynamic and secure 

resource management process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

               International Journal of Innovative Research and Scientific Studies, 8(5) 2025, pages: 2030-2043
 

2040 

l 7::gy L y (lylh) 

 
Figure 8.  

Trade-off: Actual Energy Cost Component vs. Actual Latency Cost Component (across various weight settings, potentially colored by 
α). 

 

 
Figure 9.  

Distribution of VMs per Active Server (e.g., Box Plots) for Different Key Weighting Strategies. 

 

 

 

 

 

 

 

 

 

 

 



 
 

               International Journal of Innovative Research and Scientific Studies, 8(5) 2025, pages: 2030-2043
 

2041 

 l 9: i L 

 
Figure 10.  

Number of Active Servers vs. Number of VMs (from VM Load Scaling Experiment). 
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Figure 11.  
Solver Time vs. Combined Problem Size Metric (e.g., VMs × Servers for scaling experiment). 
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