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Abstract 

Advances in information and communications technology (ICT) are improving daily convenience and productivity, but new 

malware threats continue to surge. This paper proposes a malware detection system using various machine learning 

algorithms and portable executable (PE) Header file static analysis method for malware code, which has recently changed in 

various forms. Methods/Statistical analysis: This paper proposes a malware detection method that quickly and accurately 

detects new malware using static file analysis and stacking methods. Furthermore, using information from PE headers 

extracted through static analysis can detect malware without executing real malware. The features of the pe_packer used in 

the proposed research method were most efficient in experiments because the extracted data were processed in various ways 

and applied to machine learning models. So, we chose pe_packer information as the shape data to be used for the stacking 

model. Detection models are implemented based on additive techniques rather than single models to detect with high 

accuracy. Findings: The proposed detection system can quickly and accurately classify malware or ordinary files. Moreover, 

experiments showed that the proposed method has a 95.2% malware detection rate and outperforms existing single model-

based detection systems. Improvements/Applications: The proposed research method applies to detecting large new strains 

of malware. 
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1. Introduction 

With the development of information industry technology, daily convenience and productivity in the industrial field have 

been obtained, but security threats have simultaneously increased. As information technology, such as big data and the 
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Internet of Things (IoT), advances rapidly, the use of the Internet is indispensable. Thus, cyber-attack and security are not 

just an issue in a personal computer, but expanded to a network and even the entire infrastructure, they can have a significant 

effect on our daily living. Malicious code is at the heart of this problem. Malicious code accesses user's devices to cause 

various problems such as personal information leakage, unauthorized remote control, network traffic generation, degradation 

of system performance and financial loss. According to the AV-TEST statistics, the total number of threats by new malware 

was 137.47 million  as of 2018 for Microsoft Windows OS, which meant 4.4 threats per second. In the recent three years, the 

total number of malware threats was 719.15 million in 2017, 856.62 million in 2018, and 1,001.52 million in 2019, which 

verified the increasing trend [1]. To detect malware, signature-based or heuristic-based methods are most widely used [2]. 

The signature-based method detects malware by analyzing signatures made from malware behavior rules or unique binary 

forms by the analysis personnel. The heuristic-based method detects malware by comparing the similarity of the code. The 

heuristic-based method has been used to overcome the drawback of the signature-based method, but it is vulnerable to the 

increase in false-positive rate. In addition, since the heuristic-based method detects malware from data extracted from the set 

of collected malware, it is difficult to respond to variant malware or a zero-day attack immediately. To overcome this 

limitation, a method to detect malware using artificial intelligence (AI) has been studied. The AI area has been spotlighted in 

recent years in many applications, including AlphaGo, autonomous driving, and chatbot, etc. Samsung SDS (Samsung Data 

System) tested the detection rates of signature-based and AI-based anti-virus methods. The result showed that the false 

positive rate of signature-based anti-virus was 93.8%, whereas AI-based anti-virus was 0% in the variant malware area. In 

addition, the AI-based anti-virus also recorded around 1% of the false-positive rate in execution files and ransomware other 

than document-type files [3]. As such, studies on AI-based malware detection technology have been actively conducted to 

overcome the limitation of existing malware detection methods. There are three types of feature data extraction methods of 

malware. Automation analysis uses an automation platform such as a sandbox, dynamic analysis that focuses on actual 

running code and behavior while executing malware, and static analysis that obtains information by analyzing malware binary 

files without executing them. The static analysis method is relatively more straightforward and faster than other methods to 

get general information about the characteristics of malicious programs. In particular, it has little risk of infection because it 

does not execute programs directly. Thus, this study proposes a method to learn, analyze, and detect malware files by applying 

the portable executable (PE) header feature values to the stacking method after data pre-processing using the static analysis 

method targeting malicious and normal files. 

 

2. Related Work  
The study by Ha, et al. [4] statically analyzed imported dynamic link libraries (DLLs) inside the PE headers and 

application programming interface (API) features and employed the analysis results to detect malware. To check the feature 

performance, a deep neural network (DNN) model was used. Features that were rapid and lighted while detecting malware 

were selected after identifying the emergence ratio between malware and normal files by extracting the DLL/API information. 

The machine learning results were comparatively analyzed, which exhibited that by only using the static analysis the accuracy 

was over 91% in API and 86% in DLL. Their study did not use all PE header information, but only employed DLL and API 

features. Furthermore, machine learning was used not to improve malware detection accuracy but to find useful features to 

detect malware from the DLL/API information and verify the features. Ahmadi, et al. [5] studied the malware challenge data 

provided by Microsoft using the XGBoost model and then classified them into families according to malware features. It 

employed five byte-based features and eight disassembly-based features extracted from the PE headers through data static 

analysis. The experiment was conducted with cross-validation. It showed more than 95% accuracy in most training features, 

and when all features were composed of training data, it showed 99% accuracy, which showed the best performance. 

However, their study employed only 13 features extracted from PE headers. It proposed a method to classify distinguished 

characteristics according to malware into families based on the grouping of the characteristics rather than detecting malware 

files. The study by Lee, et al. [6] analyzed the multi-classification performance of ensemble models after configuring the 

API/DLL features of training data for the family classification of malware. The PE import address table (IAT) was analyzed 

to extract API/DLL information, and pre-processing was conducted by analyzing assembly code. Tree-based algorithms such 

as XGBoost and random forest were used as a model to train malware. Binary classification experiments of normal and 

malware and multi-classification investigation of malware families were conducted. The experiment was conducted with 

cross-validation. In the performance comparison, the malware detection rate was 93% when using random forest. The 

classification accuracy of malware families was 92% when using XGBoost, and the test’s false positive rate that included 

benign code was 3.5%. Their study should define the list of APIs in advance to employ the features of the APIs, and feature 

values became scarce regardless of classes if the name in the list would be different due to Windows operating systems update 

or function name change. Thus, detection models based on API features are not appropriate to be used for a long time. These 

study trends show that features are extracted based on various information that can be statically extracted, and machine 

learning is used to detect malware. However, classification models were implemented using only part of the information 

obtained from PE files or employing only machine single learning models. In the present study PE headers and opcode feature 

data, which can be obtained using the static analysis method to rapidly detect a large amount of generated malware with less 

consuming resources, are extracted and employed as feature data.  In addition, this study employs the stacking method that 

mixes and uses a single model, which is different from other ensemble methods, to raise the accuracy of malware file detection 

and reduce the false-positive rate. 

 

3. Proposed Method 
The malware detection system proposed in this study consists of the following steps: data preprocessing, feature 
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extraction, model learning, and model evaluation. Figure 1 shows the flow of the malware detection system used in the 

experiment. 

 

 
Figure 1.  

System configuration diagram of the proposed method. 

 

3.1. Data Preprocessing and Feature Extraction 

PE files refer to execution files, DLLs, font files, and object code. etc., which are used in the Windows operating systems. 

Information needed in PE files is mostly present in the header section in the PE structure. To extract the features of the PE 

header, a script provided by the open-source project of Classification of Malware with PE headers (ClaMP) was used [7]. 

Using this script, a total of 60 raw features were extracted as follows: six from Disk Operating System (DOS) headers, 17 

from file headers, 37 from optional headers and seven derived features. The derived features refer to features where 

meaningful information is extracted by processing PE header values one more time. In this study, extracted PE headers were 

processed using three methods and tested to find the optimal performance features: 

1. Since the packer_type column in the extracted PE header contains the categorical data, pe_header features were 

generated by removing the column. 

2.  Pe_packer features were generated by the one-hot encoding of the same column. Figure 2 shows the one-hot encoding 

of typical four data types in the packer_type column. 

3.  Pe_top features were generated using Pearson's correlation coefficient. 

Figure 3 shows the overall pe_header features by visualizing the correlation coefficients. Here, only 45 columns, 

including e_cblp, which have a range of correlation coefficients from 0.0 to 0.3 with the class, were separately extracted and 

used as the pe_top features. 

 

 
Figure 2.  

Example of one-hot encoding method used to process pe_packer features. 

 

Features from the PE header and the actual code in the data area were extracted. After locating the code portion, opcode 

data, which is a byte, was converted to assembly code. The converted code's feature was extracted using the N-gram analysis. 

N-gram is a natural language processing method that extracts a continuous sequence of N elements from a given set of strings.  

It ties N continuous opcodes and recognizes it as a single pattern, thereby counting the same patterns. The data scarcity 

problem may occur when N is more significant and the size of the pattern is more significant, resulting in a decrease in the 

probability of counting. Thus, this study tested the case only when N is three or four. The patterns of opcode 3-gram or 4-

gram were extracted, and only the patterns whose pattern count was one of the top 100 from a single file were separately 

extracted to be used as feature values.  

To evaluate the optimal combination from the extracted features, the extracted features were put into many classification 

algorithms and tested. The classification algorithms used in the test were logistic regression, support vector machine (SVM), 
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random forest, and XGBoost. The data for feature extraction were 15,000 learning data files provided by the 2018 information 

protection research and development (R&D) Data Challenge AI-based malware detection track. Of the total, 80% of them 

were used in learning, while 20% were used in testing. 

 
Table 1. 

Learning results of the extracted features using the classification algorithms. 

Model data LR SVM RF XGB AVG 

pe_header 0.709 0.710 0.940 0.934 0.823 

pe_packer 0.709 0.710 0.944 0.935 0.825 

pe_top 0.708 0.710 0.928 0.920 0.817 

4gram 0.744 0.736 0.805 0.812 0.774 

3gram 0.774 0.731 0.824 0.820 0.787 

pe_4gram 0.691 0.697 0.910 0.932 0.808 

pe_3gram 0.692 0.697 0.909 0.924 0.805 

 

 
Figure 3.  

Visualizing correlation coefficients for pe_top features. 

 

The features of pe_3gram and pe_4gram are features of single data by combining pe_packer and N-gram features by 

column. As presented in the learning results of Table 1, the average accuracy of the PE header processed features was higher 

than that of single N-gram features. In addition, the accuracy of the pe_packer feature created by adding packer information, 

which was made by the one-hot encoding of the packer_type column, was higher than that of the pe_header feature. The 

highest accuracy was found when the pe_packer feature was applied to the XGBoost model in terms of the best accuracy 
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criterion. In contrast with the N-gram feature, which had a case that cannot be extracted depending on files, all Windows 

programs had PE headers because PE headers provided information about the program overall. Thus, the pe_packer features, 

which can be extracted from all files had higher accuracy than other features, were selected as the final feature used in the 

modeling. 

 

3.2. Model Learning 

The stacking (stacked generalization) method, called metamodeling, was used for malware learning [8]. The stacking 

method is a technique to produce the best performance by mixing and using different single models instead of using other 

machine learning ensemble techniques. The prediction results of the sub-model were produced using the training dataset, and 

these results were used again as training data for the meta learner. It is an algorithm to make the final prediction value by the 

meta learner with the prediction values of the sub-model as the input values. Because the overfitting problem occurs if the 

same data are repetitively trained, the cross validation (CV)-based stacking method was used [9]. 

The CV-based stacking method employs the K-fold cross-validation method, in which a training dataset of each sub-

model is divided into K datasets, and tests are conducted K times. After defining each sub-model, the sub-model is trained 

with the training data set divided by the fold. The prediction of the validation data set is conducted to perform the K-fold 

averaging prediction that produces the prediction result. After each model is predicted K times, the average of the prediction 

value is designated as the resultant prediction value (mean of temporary predictions). The generated resulting prediction 

value is used as the training data of the meta learner to conduct the model training. After this, the prediction is finally 

performed using x_test, which is then compared using y_test to evaluate the final model. 

 

 
Figure 4.  
Configuration diagram of the stacking model. 

 
Table 2. 

Predicted result of stacking sub-model. 

K-fold ET RF LGB XGB 

Fold 0 0.951 0.958 0.952 0.956 

Fold 1 0.956 0.961 0.954 0.961 

Fold 2 0.954 0.961 0.953 0.956 

Fold 3 0.954 0.958 0.956 0.953 

Fold 4 0.952 0.952 0.953 0.957 

Fold 5 0.954 0.964 0.955 0.963 

Fold 6 0.953 0.960 0.953 0.957 

Mean 0.953+0.001 0.960+0.001 0.953+0.002 0.958+0.002 

Full 0.953 0.960 0.953 0.958 

 

This study used Extra Tree (ET), Random Forest (RF), Light XGBoost (LGB), and XGBoost (XGB) in the sub-model, 

and XGBoost was used in the meta learner, which was the final classifier. To implement the stacking model, vecstack [10] 

and Sklearn packages were used. The data for model learning were 15,000 learning data files provided by the 2018 

information protection R&D Data Challenge AI-based malware detection track and collected 18,389 data files.  Out of 33,389 

files, 23,657 files were malware, and 9,732 files were benign. Out of the extracted total data of 33,389 files, 80% were used 

as the training dataset, and 20% were used as the validation dataset. K value in the K-fold cross-validation was set to seven 

to conduct the learning. Once the 7-fold averaging prediction was conducted, S_train and S_test, which were the prediction 

result of the training and validation datasets, were generated. These result values were trained with the final classifier, 

XGBoost [11], to produce the final prediction result. The configuration diagram of the stacking model is shown in Figure 4. 

The prediction values of each model extracted by entering the dataset to the sub-model are presented in Table 2. The final 
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prediction result of 0.9671 was measured after entering the average of prediction values of each model to the final classifier. 

This meant that using the stacking model, which was an ensemble technique, showed the improvement of accuracy was 

greater than that of using only a single model. 

 

4. Experiments Result 
4.1. Model Evaluation 

The performance evaluation indicators are described before presenting the experimental results. In this study, precision 

(PRE), true positive rate (TPR), false positive rate (FPR), accuracy (ACC), and F-score were compared as the measures of 

the performance evaluation. PRE refers to the proportion of detected malware files to actual malware files Equation 1. TPR 

refers to the ratio of actual malware files that are accurately detected. The larger the value is, the better the system is Equation 

2. FPR refers to the proportion that true benign files are seen as malware files. This is different from other evaluation scores 

as the lower the value is, the better the system is Equation 3.  

TPR and FPR have a positive correlation in general. They are used as helpful performance indicators if the class 

proportion is different because they are not affected by the class proportion. The calculation is conducted with actual classes 

in the confusion matrix.  

The classification accuracy (ACC) refers to the proportion that both malware and benign files accurately detect in the 

total detection result. The larger the value is, the better the system is Equation 4. Finally, the F-score measures model 

accuracy, an indicator used to compare actual classifiers by reflecting the upper layer relationship between PRE and TPR in 

the evaluation Equation 5. When TPR and PRE are balanced, the F-score value is more significant. 

𝑃𝑅𝐸 :  
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                                                                                                      (1) 

𝑇𝑃𝑅 :  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                                                                                      (2) 

𝐹𝑃𝑅 :  
𝐹𝑃

𝐹𝑃+𝑇𝑁
× 100                                                                                                       (3) 

𝐴𝐶𝐶 :  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100                                                                                                  (4) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 :  
𝑃𝑅𝐸×𝑇𝑃𝑅

𝑃𝑅𝐸+𝑇𝑃𝑅
× 2                                                                                                     (5) 

 

To use them as the indicator, the confusion matrix in Table 3 was used. True positive (TP) means that actual malware 

(true) is predicted accurately as malware. False-negative (FN) means malware is expected as benign (false). False-positive 

(FP) means that actual benign files are predicted as malware. True negative (TN) means that actual benign files are accurately 

predicted as benign.  

 
Table 3. 

Confusion matrix. 

Condition (actual) 

Malware Benign  

TP (True Positive) FP (False Positive) Malware 
Prediction (prediction) 

FN (False Negative) TN (True Negative) Benign 

 

4.2. Result 

In this section, the performance evaluation indicator results are presented to compare the experimental results of Extra 

Tree and XGBoost single models and results using the stacking model. pe_packer features were extracted from 470 malware 

files and 466 benign files and used as the input dataset.  

The sub-model in the stacking model used Extra Tree, Random Forest, Light XGBoost, and XGBoost, and the meta 

learner employed XGBoost. All experiments were conducted using the Ubuntu 18.04 (64bit) operating system, 

Anaconda3(64bit) and Python 3.6 were also used. The detailed experiment environment is presented in Table 4. 

 
Table 4.  

Experimental environment. 

Name Specification 

OS Ubuntu 18.04 (64bit) 

CPU Intel Xeon-2690 4-CPU 

RAM 128.0GB 

GPU NVIDIA GTX-1080TI 4-GPU 
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Table 5.  

The result of performance evaluation standard. 

Model PRE TPR FPR ACC F-score 

ET Model 92.1% 94.4% 8.1% 93.1% 93.2% 

XGB Model 90.6% 95.2% 9.8% 92.4% 92.6% 

Stacking 94.6% 95.2% 5.3% 94.6% 94.9% 

 

Table 5 presents the results after conducting the model's performance evaluation indicators based on the learning results 

using the single models of Extra Tree and XGBoost and the learning results using the stacking method. It displays PRE, TPR, 

FPR, ACC, and F-score evaluation results of benign and malware files. Figure 5 shows the receiver operating characteristic 

(ROC) curve of the experimental results of the performance evaluation indicators. The larger the area below the graph is, the 

better the result is. The TPR, FPR, ACC, PRE, and F-score of the single models exhibited 94.8%, 8.95%, 92.75%, 91.35%, 

and 92.9% on average. The TPRs, FPR, ACC, PRE, and F-score of the ensemble stacking model exhibited 95.2%, 5.3%, 

94.6%, 94.6%, and 94.9%. The performance evaluation indicator results verified that better performance of malware detection 

was displayed when using the stacking model than when using the single models. In addition, the speed of the models was 

measured using the test dataset; Extra Tree, XGBoost, and Stacking models took around 0.06 sec, 0.01 sec, and 0.2 sec 

respectively.  

 

 
Figure 5.  

ROC Curves of ET and XGB single models and stacking model. 

 

5. Conclusions 
This study proposes a malware detection system using a static analysis and stacking method to quickly cope with the 

security threats based on variant malware, which has increased significantly with the rapid advancement of information 

technology. The features of PE headers in malware were extracted through static analysis to detect malware rapidly and 

accurately without executing malware and processed using the pe_header, pe_packer, pe_top, and n-gram methods. The 

processed features were put into the machine learning single logistic regression models, SVM, Random Forest, and XGBoost 

and their accuracy was compared. The pe_packer features were then selected as the input data to be trained in the model as 

they had the best accuracy. The stacking method that produced the final prediction value using the prediction results of the 

single models was used to develop a model to implement a highly accurate model. The experiment results showed that the 

stacking model had 96.71% of model accuracy, 94.6% of classification accuracy, 95.2% detection rate, and 5.3% of the false-

positive rate. Although the stacking model, which was one of the machine learning ensemble methods, was verified to have 

a better performance of malware detection than using only the single model, the speed was relatively slower than that of the 

single models. The sub-model can be modified to solve this, and refined feature data may be used to improve the speed. For 

future study, various study topics such as learning models suitable according to malware family types and feature 

characteristics need to be researched as well as fast and accurate malware detection. 
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