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Abstract 

Vehicular networks, comprising communication between two vehicles (Vehicle-to-Vehicle, V2V) and communication 

between a vehicle and its environment (Vehicle-to-Everything, V2X), are critical in improving road safety, traffic 

management, and smart transport systems. However, the interconnectivity of these systems makes th em susceptible to various 

security threats, including Denial-of-Service (DoS), Sybil, and spoofing attacks. Common Intrusion Detection Systems (IDS) 

have significant limitations in their approaches, such as static reputation scoring to match attacks, small attack scope 

detection, and limited scalability in high node density. In this paper, we propose the hybrid detection framework, NOVA, by 

utilizing both statistical anomaly detection and machine learning techniques to ensure a comprehensive security solution for 

vehicular networks. Recognizing the importance of real-time adaptation to the dynamic nature of peer-to-peer networks, 

NOVA implements a sophisticated reputation management system that scales to ever-changing environments. Additionally, 

a  trusted node mechanism is integrated, securing critical infrastructure nodes through cryptographic authentication and 

communication prioritization. This allows NOVA to operate in a distributed architecture with the support of vehicular cloud 

integration for handling networks with high density while guaranteeing performance. NOVA outperforms all existing 

schemes with a high detection rate (around 97% average for multiple attack types), lower false positive and false negative 

rates, and stable performance scalability up to 500 nodes, as extensive simulation results have shown. Comparisons against 

state-of-the-art systems demonstrate how NOVA performs better in terms of accuracy and scalability, establishing NOVA as 

a promising solution to facilitate secure intelligent transportation networks in the future. 
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1. Introduction 
Most vehicular network developments today are focused on related infrastructures in Vehicle -to-Vehicle (V2V) 

and Vehicle-to-Everyth ing (V2X) communications, drastically improving modern transportation systems, traffic 

control, and infotainment continuity [1, 2]. However, the interlinkage of these networks makes them susceptible to a 

variety of security attacks such as Denial-of-Serv ice (DoS) [3, 4], Sybil [5], and spoofing attacks [6]. Such attacks can 

disrupt communication, compromise safety-critical information, and cause serious accidents handled by traffic 

applications [7-9].  

Traditional Intrusion Detection Systems (IDS) for networks of vehicles (or vehicular ad -hoc networks, VANETs) 

tend to target specific attacks, usually in a centralized architecture and by using static thresholds [10, 11]. On the MAC 

layer, for example, DAMASCO [12] monitors DoS attacks with statistical outlier detection; however, its inflexibility  

makes it less useful for more complex attacks such as Sybil attacks. Systems like the ones proposed by Vinita and 

Vetriselvi [13] have difficulty scaling with a high density of nodes, causing latency in detection time and lower 

accuracy in real-time. These challenges point to a fundamental requirement for a scalable, adaptive, and multi-layered  

security solution [14, 15].  

To address these limitations, we present NOVA, a novel hybrid detection framework that can cover all types of 

attacks in vehicular networks. NOVA uses statistical outlier detection and machine learning techniques to accurately 

manage a wide variety of attack types. NOVA incorporates dynamic reputation management that allows it to adjust to 

changes in the network as it continuously updates each node’s reputation based on live behaviors, unlike existing 

systems. Towards a centralized management approach, the trusted node mechanism also maintains continuous data 

communication in support of high-priority nodes, that is, emergency vehicles, by adopting identification and priority  

handling based on cryptographic authentication. In summary, the contributions of this paper are:  

Hybrid Detection Framework: An approach based on the combination of statistical model-based anomaly detection  

with a machine learning approach to improve detection for more than one type of attack; these include DoS maximum, 

Sybil, and spoofing attacks.  

Dynamic Reputation Management System: An adaptive reputation mechanism that is incrementally updated 

according to real-time node actions to obtain fewer false positives and allow for trust recovery based on changing 

network conditions.  

Trusted Node Mechanism: A strong cryptographic framework to validate critical infrastructure entity identity and 

reallocate traffic to enable it in high-traffic or emergency situations.  

Architecture of Scalable Distributed System: Design against vehicular cloud services for elastic scaling for real-

time low latency detection over large-scale and high-density vehicular networks.  

The rest of this paper is organized as follows: In Section 2, we review the related work and point out the 

requirements needed in the IDS solutions. The architecture and detection mechanisms of the NOVA framework are 

presented in Section 3. The experimental methodology is detailed in Section 4, and the evaluation results and 

comparison are presented in Section 5. Section 6 concludes this paper. 

 

2. Related Work 
In recent years, the explosive growth of vehicular networks has enriched security capabilities for connected cars, 

vulnerable to provide Vehicle-to-Vehicle (V2V) and Vehicle-to-Everyth ing (V2X) communication by various IDS, but 

also prone to attacks [16-21]. Various works have suggested remedies in terms of improved misbehavior detection, 

anomaly detection, and enhanced robustness of the system. Here are some recent works in this direction:  

Shams, et al. [22] effectively emphasize the importance of security in VANET and the proposed packet intrusion 

detection system in the context of attack detection using CAFECNN. Above all, it shows resourcefu l motivation , 

methodology (data  collect ion , synthetic testing, CNN-based model), and results. 

Zaidi, et al. [23] present the design and evaluation of an intrusion detection system (IDS) for VANETs, detecting 

rogue and false information attacks. It emphasizes the application of statistical methods, Monte Carlo simulations, 

and data exploration. However, it lacks information on important performance metrics and improvements. 

Chakraborty, et al. [24] clearly establish the need for securing VANETs via node credibility assessment followed  

by the contribution of a new machine-based learning security scheme. The other detail focuses on the use of game 

https://creativecommons.org/licenses/by/4.0/
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theory encryption and fuzzy rule-based neural network integration. 

Hamdan, et al. [25] present an overview of the Sybil attack on VANETs and a hybrid detection algorithm  

of P2DAP and footprint methods. It does a  good job of explaining the performance conditions for each method and 

gives mention of implementation with the ns2, SUMO, and MOVE tools. 

Vinita and Vetriselvi [13] present the mitigation of Sybil attacks with 6G-enabled IoV, federated learning, and 

vehicular fog computing. This approach not only improves accuracy  in detection but also reduces latency and on-

board vehicle selection with FLEMDS framework integrated fuzzy logic-based vehicle selection. It would be further 

enhanced by the inclusion of key experimental results (87% detection accuracy). 

Luong, et al. [26] well explain VANET challenges, including flooding attacks, and also provide an overv iew 

of the proposed MFFDA and FAPDRP solution. It describes major contributions related to tracking behaviora l 

history, median filtering, and a new routing protocol. The findings suggest enhanced detection accuracy (98.5%) and 

performance superior to AODV. 

Paranjothi and Atiquzzaman [27] reason why rogue nodes are the problem in VANETs and propose the F–

RouND framework, which uses fog computing, to effectively detect rogue nodes. Performance gains in the order of 

45% and 36% lower processing latencies and FPR respectively are consistent ly emphasized. 

Valentini, et al. [12] provide an overview of the challenges presented by Intelligent Transportation Systems (ITS), 

particularly (VANETs), and note their vulnerability to denial-of-service attacks. The DAMASCO system is well described, 

especially its specialization in the MAC sublayer and the use of MAD for anomaly detection. One highlighted result is a  3% 

false positive rate with no fans. However, it can be strengthened with a comparison to existing systems and also with 

performance gains, such as packet delivery rate and detection speed. A mention o f scalability or the ability to handle more 

traffic would also help strengthen the abstract further. 

The related works described in this section can be categorized according to various architectures and detection  

approaches, ranging from RSU-base to fully distributed methods, addressing one or more attacks. Table 1 provides an 

overview of the main features of these works, and emphasizes the unique touchscreen protection cap abilities of our 

security model. 

 
Table 1. 
Comparison of IDS-based Security Solutions for VANETs. 

Work Deployment Detection Methodologies Supported Attack 

Types 

Reputation 

Management 

MAC 

Layer 

Hamdan, et al. [25] Both Hybrid (P2DAP + 

footprint), plausibility 

Sybil, footprint 

manipulation 
No No 

Vinita and Vetriselvi 

[13] 

Centralized Federated learning, fuzzy 

logic 

Sybil attacks No No 

Luong, et al. [26] Distributed Statistics, anomaly filtering Flooding 

attacks 

No No 

Valentini, et al. [12]

 (DAM- 

ASCO) 

Distributed Statistics (MAD-based 

outlier detection) 

DoS/DDoS 

attacks 

Static Yes 

Proposed 

(NOVA) 

Distributed Hybrid (Statistics + 

Machine Learning) 

DoS, DDoS, 

Sybil, spoofing 

Dynamic Yes 

 

The discussed work shows significant progress in intrusion detection in vehicular networks; however, open 

problems remain unsolved. Many systems, e.g., [12, 25, 26], do not practice reputation management or rely on static 

approaches. Static approaches do not adjust to the dynamics of a network and thus suffer from several problems, such 

as permanent false positives and delayed recovery of a node’s trust. On the other hand, NOVA addresses this by 

implementing an ongoing reputation management mechanism that recalibrates node reputations based on behavior in  

real-time. 

Moreover, they often focus on a  small set of attack types. For example, Hamdan et al. focus on preventing Sybil 

attacks, Luong et al. target flooding attacks, and DAMASCO is aimed at DoS/DDoS attack detection at the MAC layer 

via statistical outlier detection. However, these models for detecting single attacks are not suitable for defending against 

complex attacks such as OS spoofing or data injection. NOVA is a hybrid model leveraging both statistical and machine 

learning methods to bridge the aforementioned gap, thus enabling it to det ect numerous types of attacks, includ ing 

DoS, DDoS, Sybil, and spoofing attacks. 

Additionally, the vast majority of systems, including DAMASCO [12], do not implement trusted nodes, which are 

important for maintaining non-stop communication between essential infrastructure nodes (such as emergency  

vehicles) in high-traffic or emergency situations. Without them, there’s a danger of unnecessary service-style disruption  

when trusted nodes are labeled as malicious. NOVA addresses this gap with a cryptographically authenticated trusted  

node approach that prioritizes such nodes and authenticates trusted nodes, wh ich prevents false positives from 

disrupting the business of these nodes. 

Many systems exhibit scalability and performance restrictions that are related to deployment challenges. Solutions 

like Vinita and Vetriselvi [13] and Chakraborty et al. use centralized architectures that may have issues with latency 
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and scalability in large vehicular networks. NOVA addresses these challenges through its distributed vehicular cloud  

integration architecture, which achieves better real-time performance and scalability. DAMASCO [12], while securing 

the MAC layer, is in contrast to other solutions that ignore this at such a level, leaving their lower net -layer 

communication protocols vulnerable. NOVA makes it possible to achiev e both MAC and network layer protection , 

setting it apart as a more comprehensive solution relative to data integrity vulnerabilities across the communication  

stack. 

To conclude, the main gaps in the current research are dealing with static reputation, cov erage of attacks, trusted  

nodes, and scalability. NOVA is intended to enhance the security and reliability of vehicular networks by tackling these 

issues. 

 

3. Proposed NOVA Framework 
In this paper, we present the NOVA framework, which achieves stronger security features in vehicular networks 

by complementing existing detection systems with network-oriented signature analysis, as shown in Figure 1. Consider 

using a hybrid model of statistical method together with machine learning in NOVA to detect attacks like Denial- o f -

Service (DoS), Distributed DoS (DDoS), Sybil attacks, spoofing, and data injection in real time. 

 

 
Figure 1. 

Overview of Proposed NOVA framework. 

 

3.1. Overview of NOVA Architecture 

NOVA operates within the VANET infrastructure, focusing on decentralized , vehicle- to-vehicle (V2V) 

communication . The framework consists of several key modules: 

• Data Collection Module: Continuously monitors and logs communication packets, metadata, and traffic patterns 

from the MAC and network layers. 

• Statistical Anomaly Detection Module: Uses an improved Median Absolute Deviation. 

The MAD (Median Absolute Deviation) method is used to detect outliers in request frequencies, flagging 

potential DoS/DDoS attacks. 

• Machine Learning Detection Module: Employs lightweight machine learning models (e.g., decision trees or 

autoencoders) to detect complex anomalies, such as Sybil or spoofing attacks, which are harder to identify using 

purely statistical methods. 

• Reputation Management Module: Maintains and updates dynamic reputation scores for nodes. This score reflects 

a node’s behavior over time, with provisions for reputation recovery through decay mechanisms.  
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Trusted Node Mechanism: Ensures priority handling of trusted nodes (e.g., emergency vehicles) by 

authenticating them with cryptographic protocols to prevent accidental blacklisting. 

• Vehicular Cloud Integration: Facilitates secure synchronization of reputation lists and threat data across 

vehicles in the network using cloud-based infrastructure. 
 

3.2. Detection Mechanisms  

         This subsection presents a new way of detecting cyber threats in IoT using a hybrid detection approach that 

combines statistical anomaly detection and machine learning-based anomaly detection. The combination of simple 

and complex anomaly detection mechanisms serves both for the fast identification of simple types of attacks, such as 

Denial-of-Serv ice (DoS), and for a thorough examination of any complex attacks, such as Sybil or data spoofing 

attacks. These methods address the challenges in deep learning technology by supporting accuracy as well as 

scalability, allowing the system to fulfill and adjust to dynamic vehicle environments. 
 

3.2.1. Statistical Detection Module (Enhanced MAD) 

The statistical detection mechanism aims to rapidly detect volumetric attacks such as DoS or DDoS attacks. Using 

the Median Absolute Deviation (MAD) method, which is more robust to outliers, it identifies unusual spikes in packet 

transmission rates. This algorithm makes measures of deviation from the median traffic rate. If any node sends 

significantly more packets than it should, it is flagged as malicious. 

 

Algorithm 1 Statist ica l Detect ion using MAD 

Require: Traffic data  T, exclusion constant ec, scaling factor b 

Ensure: List of flagged malicious nodes 

1: Initialize x ← list of packet counts from nodes in T 

2: Compute Mx ← median(x) 

3: Compute deviations D ← |xi − Mx| for each xi in x 

4: Compute MAD ← b · median(D) 

5: Initialize flagged nodes ← [] 

6: for each node i in T do 

7: if xi > (Mx + ec · MAD) then 8: 

 Add node i to flagged nodes 9:

 end if 

10: end for 

11: return flagged nodes 

 

3.2.2. Machine Learning Anomaly Detection 

The machine learning detection center detects advanced attacks such as Sybil attacks, identity spoofing, and false 

data injection. In this module, we extract features from multi-dimensional networks, including node identities, message 

types, and traffic patterns. This algorithm predicts whether each node’s behavior is normal or anomalous. Anomalous 

nodes are identified for inspection and mitigation. 

The module can operate in: 

• Supervised Mode: A classifier (e.g., Decision Trees or Support Vector Machines) is trained with pre -labeled attack 

data. 

 

Algorithm 2 Machine Learning Anomaly Detection 

Require: Feature vector set F from nodes, trained model ML Model 

Ensure: List of flagged malicious nodes 

1: Initialize flagged nodes ← [] 

2: for each feature vector f in F do 

3: prediction ← ML Model. predict(f ) 

4: If the prediction indicates an anomaly, then. 

5: Add the corresponding node to flagged nodes 

6: end if 

7: end for 

8: return flagged nodes 

Unsupervised Mode: When we do not have labeled data, we can find outliers through other techniques like 

autoencoders or clustering. 

 

3.2.3. Hybrid Detection Process 

The hybrid detection system is divided into two phases: 

• Phase 1: Statistics Screening: The first processing is handled by the statistical mod - ule, which is responsible for 

traffic data. Nodes that surpass the MAD limit are flagged in real-time. 

• Phase 2: Machine learning analysis: In case of ambiguous behavior by the node 
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(Shrouded in the statistical threshold), a  data set rich in features is sent to the machine learning module for further 

analysis. 

The two-phase strategy eliminates false positives but retains real-time capabilities. This algorithm starts with a 

statistical screen. In cases where some nodes show borderline behaviors, their evaluation is raised to the machine 

learning module so that they can be detected with less consumption of resources. 

 

Algorithm 3 Hybrid Detection Process 

Require: Traffic data  T, feature vectors F, exclusion constant ec, scaling factor b, trained model 

ML Model 

Ensure: List of flagged malicious nodes 

1: flagged nodes stat ← Statistical Detect ion (T, ec, b) 

2: ambiguous nodes ← Nodes near threshold but not flagged 

3: if ambiguous nodes is not empty then 

4: flagged nodes ml ← Machine Learning Detect ion (F, ML Model) 

5: flagged nodes ← flagged nodes stat ∪ flagged nodes ml 

6: else 

7: flagged nodes ← flagged nodes stat 

8: end if 

9: return flagged nodes 

 

3.3. Dynamic Reputation Management  

Traditional Intrusion Detection Systems (e.g., DAMASCO) [12] suffer from one of the major drawbacks of 

rigidity. To address this problem, a Dynamic Reputation Management Module is introduced in NOVA, as shown in  

Algorithm 4. This module works in an online fashion and keeps track of the actions of nodes, continuously assign ing 

them a reputation score that efficiently indicates how trusted the node is in the longer term. This dynamic nature acts 

to slow down potential false positives, ensuring that malicious nodes can be reassessed and that trusted nodes can be 

re-established after a number of normal activities return to them. 

Algorithm 4 Dynamic Reputation Management 

Require: Node list N, detection results D, current reputation scores R, decay rate α 

Ensure: Updated reputation scores 

1: for each node i in N do 

2: if i is flagged by the detection module in D then 

3: Apply penalty: ∆Ri ← −β 

4: else 

5: Apply decay: ∆Ri ← α · (Rmax − Ri) 

6: end if 

7:Update reputation : Ri ← Ri + ∆Ri 

8: if Ri < Rcritical then 

9: Classify node i as malicious and block communication 

10: else if Ri < Rlow then 

11: Throttle communication for node i 

12: end if 

13: end for 

14: return R 

 

3.3.1. Reputation Score Calculation 

Every node in the network has a reputation score that updates according to observed actions. There are a few 

factors that affect the reputation score: 

• Module for Anomaly Detection Results: Nodes flagged by either the statistical or the machine learning 

module are penalized by reducing their reputation. 

• Traffic Patterns: How Traffic Patterns are Taken Into Account (Normal vs Abnormal 

Communication) 

• Severity of Misbehavior: A severe misbehavior (e.g., sending too many packets, indicating a DoS attack) 

contributes more significantly to the node’s reputation penalty. 
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The reputation score can be modeled as follows: 

Ri(t) = Ri(t − 1) + ∆Ri 

 

Where: 

• Ri(t) is the reputation score of node i at time t, 

• ∆Ri is the change in reputation based on recent behavior. 

 

3.3.2. Reputation Decay 

Reputation decay is introduced to avoid the permanent blacklisting of nodes. If a  node behaves normally for a long 

time, the reputation score rises gradually. The decay rate can be tuned according to network conditions and the manner 

of attacks observed. Equation for Decay Function:  

∆Ri = α · (Rmax − Ri(t − 1)) 

Where: 

• α is the decay rate constant, 

• Rmax is the maximum reputation score a node can have. 

 

3.3.3. Reputation List Management 

The system keeps a reputation list in which reputation scores of all nodes in the communication range are stored. 

This list is periodically updated and synced with other vehicles on the network using vehicular cloud integration. 

 

Reputation List Fields: (i) Node ID (MAC/I P address); (ii) Curren t Reputation Score; (iii) Last Upda ted  

Timestam p; and (iv) Status (i.e., "Norma l," "Malicious," "Trusted"). 

 

3.3.4. Actions Based on Reputation 

NOVA uses a reputation score to classify nodes and to take action to keep the network secure, as shown in Table 

2. Malicious nodes are temporarily blocked and are periodically re-evaluated for removal from the blacklist. 

 
Table 2. 
Reputation classification and corresponding researchers’ groups 

Reputation Range Classification Action 

High (close to maximum ) Trusted Grant full communicat ion access 

Medium Normal Monitor traffic but no restrictions 

Low Suspicious Throttle or limit request rates 

Critical (very low) Malicious Block node and report neighboring 

vehicles 

 

3.3.5. Trusted Node Exception Handling 

The trusted nodes that are sending vehicles are authenticated with a cryptographic protocol to avoid the blockage 

of critical infrastructure nodes (consider, for example, emergency or law enforcement vehicles). They define a different  

client-percolation threshold and are not as likely to be marked as malicious. Key features include:  

• Digital Signatures: To prove that a node is eligible for priority communication. 

• Priority Overrides: In case of abnormal traffic conditions, trusted nodes maintain the privileges of 

communicating with the network. 

 

3.4. Trusted Node Mechanism 

For vehicular networks, some critical nodes, such as emergency vehicles, law enforcement units, and other 

infrastructure-related nodes, are of great significance. Protecting these nodes must involve safeguarding against false -

positive detections and denial of communication during anomaly detection, as shown in Algorithm 5. NOVA introduces 

the concept of the Trusted Node Mechanism, which ensures that essential nodes are authenticated and prioritized , 

thereby maintaining the integrity and availability of network services. 

Algorithm 5 Trusted Node Verification and Management 

Require: Node i, certificate Certi, detection result Di, reputation Ri, trusted 

thresho ld Rtrusted 

Ensure: Node classificat ion (Trusted, Normal, Malicious) 

1: if Verify Certificate (Certi) = False then 

2: Classify node i as untrusted and apply detection rules 3:

 return Normal or Malicious classificat ion based on Di 4: end  

if 

5: if Ri ≥ Rtrusted then 

6: Allow full communication access for node i 

7: return Trusted classification 

8: else 
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9: Apply normal detection and classification rules 

10: Return normal or Malicious classification 

11: end if 

 

3.4.1. Purpose and Authentication 

The trusted node mechanism accomplishes several goals: 

• Misclassification Prevention: Minimize the chance of reliable respective nodes being classified as adversarial. 

• Delay-Free Ensure: Never lose communication with a trusted node even in emergencies or high -traffic scenarios. 

• Improve Reliable Networking: Ensure secure and stable functioning of critical services in the vehicular 

network. 

In order to do this, trusted nodes need to go through authentication based on cryptographic protocols: 

• Digital Certificates: Enables the authority to verify the digital identity of the nodes and their roles and 

permissions. 

• This involves verifying message authenticity by checking digital signatures from 

trusted nodes and recipient signature. 

 

3.4.2. Trusted Node Reputation Management 

To filter out temporary misbehaviors (e.g., burst communication in front of disasters), such nodes have a different  

threshold of reputation. The key features include: 

• Priority Overrides: This means that detection thresholds are bypassed for trusted nodes and trusted nodes are given  

precedence. For instance, their packet rates could be measured against larger quotas than normal nodes. 

• Behavioral Monitoring: Although trusted nodes are given preference, they are still 

monitored for their behavior. Inappropriate or extreme misbehavior (e.g. sustained packet floods) could cause 

temporary trusted status to be suspended. 

 

3.4.3. Implementation Steps 

The trusted node mechanism works as follows: 

• Node Authentication: During initiation of communication, a node submits its digital certificate. 

• Signature Verification: The node’s signature is verified by the recipient for authenticity. Rechecking it keeps the 

node untrusted. 

• Reputation Check: Once authenticated, the reputation score of the node is compared to the trusted threshold. 

Detecting a minor detection alarm, fully authorized trusted nodes can arbitrarily communicate with trusted nodes. 

• Monitoring and Escalation: Ongoing monitoring ensures that serious misbehavior 

would be registered. Trusted status can also be suspended until the issue is resolved if needed. 

 

4. Performance Evaluation 
4.1. Simulation Setup 

To test the effectiveness of NOVA, Table 3 summarizes the key parameters used to configure the simulation  

environment for evaluating the NOVA framework. 

 

4.2. Experimental Design 

The experiment was divided into two phases: 

Phase 1: Evaluating Statistical Detection: The effectiveness of the augmented MAD method to detect a  DoS and 

DDoS attack on t h e  system was evaluated. This phase gauged the performance of the statistical outlier detection 

when facing packet flood attacks. 

 
Table 3. 
Simulation Setup Details for NOVA Framework Evaluation. 

Parameter Details 

Simulat ion Tools OMNeT+ + [28 , 29], SUMO [30 , 31], MOVE [32] 

Network Topology Urban environment with a  distributed network 

Node Density 50 to 500 vehicles 

Communicat ion Type Vehicle-to -Vehicle (V2V) communicat ion 

Bandwid th 10 Mbps (DSRC standard) 

Transm ission Range 300 meters 

Attack Scenarios DoS/DDoS , Sybil, Spoofing, Packet Injection 

 

Phase 2: Evaluation of Hybrid Detection: The hybrid system was tested in the open ocean against Sybil and 

spoofing attacks and was founded on both statistical and machine learning modules. In this phase, the proposed 

dynamic reputation management and trusted node mechanism were also evaluated. 
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4.3. Evaluation Metrics 

The following metrics were used to evaluate the performance of the NOVA framework: 

1. Detection Rate (DR): The percentage of correctly detected malicious nodes out of all actual malicious nodes. 

 
2. False Positive Rate (FPR): The percentage of legitimate nodes incorrect ly classified as malicious. 

 

 
3. False Negative Rate (FNR): The percentage of malicious nodes not detected by the system. 

 
4. True Positive Rate (TPR): Also known as Sensitivity, this metric indicates how effectively the system detects 

malicious nodes. 

 
5. True Negative Rate (TNR): Also known as Specificity, this measures the system’s ability to correctly 

identify legitimate nodes. 

 
 

6. CPU Usage: The average percentage of CPU resources consumed by the detection system, indicating 

computational efficiency. 

7. Memory Usage: The average amount of memory consumed by the detection modules during runtime.  

8. Scalability: The system’s ability to maintain performance (detection accuracy and  response time) as the 

number of nodes and network traffic increases. 

 

5. Results 
The results of the performance evaluation for the NOVA framework are shown in this section with respect to the 

simulation and testing scenarios. The findings include vital performance metrics, such as detection rate, false 

positive/negative rates, resource efficiency, and scalability. The performance metrics are evaluated against the 

DAMASCO system and other useful IDS solutions, which demonstrate the advances in both security and effic iency of 

NOVA in comparison. 

 

5.1. Detection Performance 

NOVA yielded a strong detection rate for a variety of attack patterns. The detection rates (DR) of DoS/DDoS 

attacks were greater than 97%, followed by 95% for Sybil attacks and 94% for spoofing attacks. The lower error rate 

comes from the hybrid detection method, which mixes statistical with machine learning methods.  

NOVA’s wide detection range and capability for high accuracy go beyond MAC-layer DoS detection, which  

achieved a detection rate of 95% for DoS attacks in DAMASCO [12].   

Figure 2 summarizes the detection rate comparison for several of the most common security approaches, including 

DAMASCO [12, 13] and NOVA, for conducting schematic detection accuracy against different types of cyberattacks. 

Although DAMASCO has a very high detection rate of 95%, it is optimized only for Denial of Service (DoS) attacks. This 

indicates that it is helpful in defending against DoS, but not as effective against other types of attacks. In contrast, the Vinita 

and Vetriselvi [13] scheme is focused on Sybil attacks and achieves 87% detection accuracy. With values lower than 

DAMASCO, it shows a trade-off in performance adapted to a different threat model. We find, however, that NOVA achieves 

the highest detection rate of 97% and showcases improved adaptability over multiple types of attacks at once. NOVA might 

end up being a relatively more complete and rigorous solution for system  defense against a wide range of threats. The findings 

highlight the need to design security schemes that offer different levels of effective detection versus attack coverage, 

depending on the network requirements and risk profile. 
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Figure 2. 
Comparison Detection Performance. 

 

5.2. False Positive and False Negative Rates  

           Figure 3 shows a comparison of FPR and FNR of three security approaches: DAMASCO [12, 13] and NOVA. One 

of the comparisons to discuss is the FPR and FNR between DAMASCO, Vinita and Vetriselv i [13], and NOVA. Creator 

Note: How good is good? This is not comparing apples to apples here, one on the FPR and one on the FNR, but the purpose 

here is to put three systems in the same basket. Lastly, the error rates of DAMASCO are comparably low, with a 3% FPR 

and a 5% FNR, demonstrating an overall good balance. NOVA achieves the lowest False Positive Rat e (1.2%) and False 

Negative Rate (3%) compared to the others, reaffirming that it is the most efficient detector, both with respect to coverage 

and accuracy. However, Vinita and Vetriselv i [13] show an increased error rate, with an FPR of 4% and an FNR of 13%, 

considerably higher compared to the previous model, indicating a higher chance of missing true attacks. This emphasizes 

NOVA’s strength in a multi-attack setting, where it achieves higher accuracy compared to the other approaches. In practical 

terms, this analysis shows that ensuring both FPR and FNR are minimized is paramount to keeping systems secure and 

performant. 

 

5.3. True Positive and True Negative Rate 

Figure 4 shows the TPR and TNR for three security approaches: DAMASCO [12, 13] and NOVA. DAMASC O 

presents a true positive rate (TPR) of 95% and a true negative rate (TNR) of 96%, which shows its powerful ability  

to capture true attacks while reducing false negatives. At the same time, NOVA also outshines  the remaining 

approaches with a TPR of 97% and a TNR of 98.5%, meaning it is also good at both finding attacks and not 

misclassifying legitimate traffic as malicious. In contrast, Vinita and Vetriselvi [13] show a TPR of 87% and 

TNR of 92%, which means there will likely be a greater number of false negatives and false positives than the other 

two analyzed techniques. Such differences were likely a result of each approach targeting different types of attack 

scenarios since DAMASCO is optimized for DoS attacks, while NOVA is more geared toward multi-attacks. In 

summary, NOVA delivers better reliability and versatility in a single solution for multi-vector attack scenarios. It 

emphasizes the trade-off between detection accuracy and false rates in security system designs for critical systems. 
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Figure 3. 
Comparison of False Positive and False Negative Rates. 

 

 
Figure 4. 
Comparison of True Positive and True Negative Rates. 

 

The NOVA framework displays a good balance between high threat detection and very few false alarms and 

outperformed similar generation systems such as DAMASCO in terms of both sensitivity and specificity. 

 

5.4. CPU and Memory Usage 

The measure of network’s performance using NOVA by measuring CPU and memory consumption under the 

different network loads. Figure 5 also can be used to understand the CPU and memory usage difference between the 

3 approaches: DAMASCO [12, 13] and NOVA. DAMASCO incurs the least resource usage, with 0.1% CPU usage 

and only 10 MB of memory. It is thus very efficient, especially in resource-constrained environments. NOVA also 

appears to be moderately resource efficient, consuming 0.2% CPU and 20MB of memory — a decent trade-off between  

performance and resource overhead. 
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Figure 5. 
Comparison Of CPU And Memory Usage. 

 

In contrast, Vinita and Vetriselv i [13] and 25 MB of memory — which suggests potential scalability and 

performance concerns for large-scale deployments. Overall, we can conclude that DAMASCO is the most resource -

efficient, while NOVA has a good balance in terms of performance and resource requirements, which makes it 

acceptable for moderately constrained systems. 

 

5.5. Scalability 

To assess scalability, the number of nodes in the network was progressively changed from 50 to 500, as shown in  

Table 4. Within one region, NOVA’s sensitivity did not change significantly, going from 97% to 96% with increasing 

node density. NOVA’s detection time per event was always below 200 ms and demonstrated its capability to work  

efficiently in large-scale vehicular networks. 

 
Table 4. 
Scalability Comparison of IDS Systems 

System Scalability Performance 

DAMASCO Limited; struggles with node counts > 200 

Vinita and Vetriselvi [13] Delays observed with node density > 300 

Proposed (NOVA) Stable; maintains performance with 500+ nodes 

 

DAMASCO adopts a centralized design while relying on MAC-layer outliers-based statistical detection. Although  

it is good at discovering DoS/DDoS attacks under low-traffic capabilities, the system is hardly scalable. In addition, 

performance stalks as the n nodes increase above 200; false positive rate and detection time increase. Because it lacks 

a distributed architecture and dynamic traffic handling. 

Vinita and Vetriselvi [13] system employs a fuzzy logic-based centralized federated learning paradigm for Sybil attack 

detection. The model enables enhancements in detection accuracy within small networks; nevertheless, it suffers from 

scalability problems when the number of nodes is high (i.e., more than 218). The growth of nodes leads to increased 

communication overhead and increases the latency of model synchronization and decision-making. This constrains its real-

time performance. 

NOVA employs a cloud-synced vehicular version of a distributed architecture that can scale to accommodate large 

networks. For simulations with up to 500 nodes, there was minimal impact on detection rates (a decrease from 97% to 

96%). Following ladies' foot pain with foot pain, the detection time remained under 200 ms in all scenarios, implying 

that NOVA is capable of retaining both precision and quickness even in a high-density site. Adaptive scaling 

mechanisms are built in through its reputation management and trusted node mechanism. 

 

6. Conclusion 
In this paper, we propose a hybrid detection framework called NOVA, enabling VOC secure communication by 

overcoming the main limitations existing in current Intrusion Detection Systems (IDS). NOVA works in phases; with  

statistical anomaly detection and machine learning features, it is able to detect a variety of attack types (DoS, Sybil, 

and spoofing attacks) with high accuracy. In contrast to traditional systems relying on static thresholds and centralized  

architectures, NOVA employs dynamic reputation management, allowing for real-time adjustment based on changes 
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in network behavior. This greatly decreases false positives and false negatives and gives compromised nodes a chance 

to regain trust after exhibiting normal behavior. 

NOVA additionally incorporates a trusted node mechanism to guarantee that key infrastructure nodes (such as 

emergency vehicles) can continue to communicate in data -intensive situations. This allows the system to securely  

process high-priority messages through cryptographic authenticat ion and priority queuing. Furthermore, NOVA’s 

distributed architecture extends scalability and provides low-latency performance via supported vehicular cloud  

services. 

The experimental results prove that NOVA achieves a 97% detection rate and only a 1.2% f alse positive rate, with  

stable performance as the number of nodes increases to 500. When comparing NOVA to previous systems, includ ing 

DAMASCO, Vinita and Vetriselvi [13], our system has shown obvious gains in detection accuracy, resource utilization , 

and scalability. 

In the future, further studies may address the performance optimization of the machine learning component invoked  

in NOVA, enabling it to react in scenarios of more sophisticated attacks, such as adversarial ones. In addition, the 

performance and reliability of the framework will be further validated with real-world deployment in large-sca le 

transportation networks. Another area of focus is how NOVA equally ensures the ideal deployment of powerful new 

technology, providing a scalable solution for securing intelligent transportation systems from constant ly evolving cyber 

threats. 
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