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Abstract 

The paper is devoted to exploring the exact solution of the modified Einstein's field in the setting of spatially homogeneous  

and anisotropic Bianchi type III spacetime in modified 𝑓(𝐺) gravity, where 𝐺 is Gauss-Bonnet invariant. Here, by 

employing the hyperbolic hybrid scale factor 𝑎 = 𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ (𝑡))
𝑛

 in which 𝑚, 𝑛 are positive constants,withthe power-

law𝑓(𝐺) = 𝛽𝐺𝑚+1 model where 𝛽, 𝑚  are arbitrary constants, we computed the physical and geometrical properties of the 

cosmological parameters of the model. The results of the model parameters are well satisfied with recent cosmological 

observational data. To get the exact solution of the field equation of the Bianchi type III model in the presence of an 

anisotropic dark fluid, we consider the relation in which the shear scalar(𝜎)is proportional to the expansion scalar(𝜃), 

resulting in 𝐶 = 𝐴𝑛 . Furthermore, the energy conditions for the power-law 𝑓(𝐺) model are graphically examined, and it 

turns out that the null energy condition (NEC), weak energy condition (WEC), and dominant energy condition (DEC) are 

well satisfied except for the strong energy condition (SEC). The violation of the strong energy conditions (SEC) indicates 

the 𝑓(𝐺) model supports the universe's current expansion with negative pressure, having a quintessence model in the 

present and 𝛬 cold dark matter (CDM) model in the future. 
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1. Introduction 
A general theory of relativity is a straightforward explanation of the cosmos that is also known as Einstein's theory of 

relativity. Although this theory has achieved remarkable success in modern physics, it eventually falls short of explaining 

the nature of the universe in terms of the current cosmic acceleration. As specific observational sources have already noted, 

the cosmos expands faster than expected due to the presence of "dark energy," an odd element with negative pressure. The 
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Equation of State parameter (𝐸𝑜𝑆)can be used to distinguish the properties of dark energy. It is stated as 𝜔 =
𝑝

𝜌
 where 𝑝 and  

𝜌represent the pressure and energy density of dark energy, respectively. 

As an alternative theory of dark energy, Nojiri and Odintsov [1] introduced the modified Gauss-Bonnet gravity, or  

𝑓(𝐺) gravity, where𝑓(𝐺) is a  generic function of the Gauss-Bonnet (GB) invariant 𝐺. The invariant 𝐺 takes the form 𝐺 ≡
𝑅2 − 4𝑅𝜇𝜈 𝑅𝜇𝜈 + 𝑅𝜇𝜈𝜎𝜌 𝑅𝜇𝜈𝜎𝜌   and it is a  4-dimensional topological invariant. Under modified Gauss-Bonnet or 𝑓(𝐺) 

gravity, different classes of dark energy cosmologies are investigated [2], which can be seen as motivated by string 

considerations. The gravitation technique, which can predict the acceleration of the late-time universe with a natural 

transition from deceleration to acceleration [3], takes the evolution of the universe into account. Sometimes, the 

cosmologically viable 𝑓(𝐺) models can cross the phantom divide line before reaching the current universe [4], and the 

model transits from the decelerating to accelerated phase and passes through the point 𝐺 = 0 in which the differentiability 

𝑓(𝐺) cannot admit the decelerating power-law and accelerating solution [5]. The 𝑓(𝐺) gravity theory can explain the 

current 𝛬 cold dark matter (CDM) model of the universe without any other component; it can describe dark energy 

contribution and inflationary epoch [6].Suppose we look into the contribution of the Gauss-Bonnet (GB) term 

in𝑓(𝐺)gravity. In that case, the term Gauss-Bonnet acts as a cosmological constant in an isotropic and homogeneous model 

filled with a holographic dark energy fluid in the linear and quadratic form of 𝑓(𝐺)model[7].Also, another possible 

explanation for the universe's current accelerated expansion is the correspondence phenomena between various dark energy  

models within modified gravity. In consideration of this cosmic phenomenon, Jawad, et al. [8] created a power-law solution 

that established a relationship between 𝑓(𝐺) gravity and holographic dark energy (HDE), and they also used a new-age 

graphic dark energy (NADE) model to study 𝑓(𝐺) gravity in this perspective [9]. Results from the new-age graphic dark 

energy 𝑓(𝐺) model and the holographic dark energy 𝑓(𝐺) model indicate that the current universe is expanding at an 

accelerated rate while maintaining instability, indicating the model will remain unstable as the universe evolves. 

Nevertheless, as compared to the regular HDE model, the reconstruction of 𝑓(𝐺) gravity using the ordinary and entropy-

corrected (𝑚, 𝑛) type holographic dark energy model appears more stable and realistic [10]. Yet again, Jawad, et al. [11] 

have expanded on their research by considering a range of scale factor choices to reconstruct the 𝑓(𝐺) model with HDE. As 

a result, the cosmic implications of the holographically reconstructed 𝑓(𝐺) gravity have been examined. By using a 

correspondence scenario for interacting and non-interacting schemes, Sharif and Saba [12] created a ghost dark energy 

𝑓(𝐺) model in a homogeneous, isotropic universe with pressureless matter and a power-law scale factor.  

This paper focuses on the study of 𝑓(𝐺) gravity with an anisotropic backdrop. It is well recognized that using isotropic 

models is one of the best ways to examine the large-scale framework of the universe. In addition, cosmological evidence 

like the cosmic microwave background (CMB) radiation suggests tha t the universe as it exists now is isotropic. However, 

according to specific ideas, the early universe might not have been entirely uniform, and the Bianchi model is the most 

basic model with an anisotropic background. The flat Friedmann-Lemaitre-Robertson-Walker (FLRW) model is thought to 

be a generalization of the Bianchi type I model, considered to be the most basic of the Bianchi models. Previous work has 

taken into consideration the Bianchi type I model in the context of 𝑓(𝐺) gravity theory. While Fayaz, et al. [13] 

demonstrated that the Bianchi type I power-law solution is limited to a particular class of 𝑓(𝐺) models, Sharif and Fatima 

[14] examined the energy conditions for two distinct model choices. In their discussion of the Bianchi type I model in 𝑓(𝐺) 

gravity, Hatwar, et al. [15] noted that around zero pressure and temperature, quark matter is converted into strange quark 

matter under the power-law and exponential-law models. According to Shamir [16] investigation, the anisotropic 

cosmological model, when combined with the Bianchi type I model, exhibits a singularity -free solution. The solution 

derived by exponential-law asymptotically represents the universe as the de-sitter space corresponding to an accelerated 

expansion of the universe. Additionally, using the same line element, researchers in 𝑓(𝐺) gravity study the dark energy 

cosmological model[17], the holographic dark energy cosmological model [18], and massless and massive scalar fields 

[19]. 

In this study, inspired by the work of the Bianchi type I model, we will investigate the Bianchi type III model in 𝑓(𝐺) 

gravity with a unique form of hyperbolic hybrid scale factor. The significance of the Bianchi type III model in cosmology 

lies in its ability to offer a structured approach to exploring the consequen ces of anisotropy within the universe. The 

Bianchi type III model of the universe has already been studied in the context of Einstein's and  modified theories of gravity. 

In the case of power-law and exponential-law in Einstein's theory of gravity, the Bianchi type III model of the universe ca n  

eventually approach isotropy even when dark fluid is present [20]. However, the Bianchi type III universe model remains 

anisotropic in the presence of dark fluid throughout the universe's evolution in the modified theory of gravity known as 

𝑓(𝑅) gravity, as studied by Sharif and Kausar [21]. The same outcome is observed in Lyra 's geometry in the presence of 

massive scalar fields with variable deceleration parameters [22]. Moreover, Tiwari, et al. [23] discovered that in the 

Bianchi type III model, the equation of state parameter (𝜔) filled with barotropic and dark energy ends up with 

quintessence dark energy. Korunur [24] showed that in the Bianchi type III model, the tsallis holographic dark energy’s 

deceleration parameter changes from early deceleration to late-time cosmic acceleration with scalar fields. 

The discussion that occurred above has motivated us to study the dynamics of an anisotropic, spatially homogeneous 

Bianchi type III model in 𝑓(𝐺) gravity. The objective of this work is to determine the exact solution of the field equa tion of 

the Bianchi type III model with the power-law 𝑓(𝐺) model, considering the hyperbolic hybrid scale factor in the presence 

of dark energy fluid. To achieve this, we adhere to the following paper structure: Sect. 2 provides a brief introduction to 

field equations in 𝑓(𝐺) gravity; Sect. 3 discusses solutions to the field equations for a particular 𝑓(𝐺) model choice. 

Section 4 discusses the results and the discussion. Section 5 presents the papers' concluding remarks. 
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2. Field Equations in 𝒇(𝑮)Gravity 
The action of modified Gauss-Bonnet gravity [25] is: 

𝑆 =
1

2𝑘
∫ 𝑑 4𝑥√−𝑔[𝑅 + 𝑓(𝐺)] + 𝑆𝑀

(𝑔𝜇𝜈 ,𝜓)                      (1) 

Where 𝜓 indicates the matter fields, 𝑘 is the coupling constant,  𝑔 is the determinant of the metric tensor  gμν , and 

SM
(gμν , ψ) is the matter action, in which matter is minimally linked to the metric tensor. It appears that 𝑓(𝐺) gravity is a 

purely metric theory of gravity because of this coupling of matter to the metric tensor.  

The function 𝑓(𝐺) may represent any function of the GB invariant 𝐺: 

𝐺 ≡ 𝑅2 − 4𝑅𝜇𝜈 𝑅𝜇𝜈 + 𝑅𝜇𝜈𝜎𝜌 𝑅𝜇𝜈𝜎𝜌             (2) 

Where 𝑅 is the Ricci scalar and 𝑅𝜇𝜈  and 𝑅𝜇𝜈𝜎 𝜌denote the Ricci and Riemann tensor. Gravitational field equations are 

obtained by varying the action in Equation 1 concerning the metric tensor. 

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 + 8 [𝑅𝜇𝜌𝜈𝜎 + 𝑅𝜌𝜈 𝑔𝜎𝜇 − 𝑅𝜌𝜎 𝑔𝜈𝜇 − 𝑅𝜇𝜈 𝑔𝜎𝜌 + 𝑅𝜇𝜎 𝑔𝜈𝜌 +

1

2
𝑅(𝑔𝜇𝜈 𝑔𝜎𝜌 − 𝑔𝜇𝜎 𝑔𝜈𝜌 )] × ∇𝜌∇𝜎𝐹 + (𝐺𝑓𝐺 −

𝑓)𝑔𝜇𝜈 = 𝑘𝑇𝜇𝜈                                                             (3) 

Where the operator ∇𝜇denotes the covariant derivative and 𝑓𝐺represents the derivative of 𝑓concerning 𝐺. 

The line element for a spatially homogeneous, anisotropic, and Bianchi type III spacetime is given by  

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2 𝑑𝑥2 − 𝐵 2𝑒−2𝛼𝑥𝑑𝑦2 − 𝐶 2𝑑𝑧2                           (4) 

Where 𝐴, 𝐵, and 𝐶  are cosmic scale factors, and  𝛼 is constant. Here, it should be noted that Equation 4 recovers the 

Bianchi type I model by setting the value 𝛼 = 0 from the Bianchi type III model. 

The Ricci scalar and Gauss-Bonnet invariant are: 

 

𝑅 = −2 [
𝐴̈

𝐴
+

�̈�

𝐵
+

�̈�

𝐶
−

𝛼2

𝐴2 +
𝐴̇�̇�

𝐴𝐵
+

𝐴̇�̇�

𝐴𝐶
+

�̇��̇�

𝐵𝐶
]                                  (5) 

𝐺 = 8 [
𝐴̇�̇� �̈�

𝐴𝐵𝐶
+

𝐴̇�̈��̇�

𝐴𝐵𝐶
+

𝐴̈ �̇��̇�

𝐴𝐵𝐶
−

𝛼2

𝐴2 ∙
�̈�

𝐶
]   (6) 

Where the dot represents the derivative with respect to ‘t’. 

Here, assuming the universe is filled with a dark energy fluid, the energy-momentum tensor become: 

𝑇𝜈
𝜇

= 𝑑𝑖𝑎𝑔[𝜌, −𝑝𝑥 , −𝑝𝑦 , −𝑝𝑧 ]                        (7) 

where 𝜌 is the energy density of the fluid and 𝑝𝑥 , 𝑝𝑦  and 𝑝𝑧  are the pressures along the 𝑥, 𝑦, and 𝑧 axes. The fluid is 

characterized by the EoS 𝑝 = 𝜔𝜌, where 𝜔 is not necessarily constant. 

From Equation 7, it follows that 

𝑇𝜈
𝜇

= 𝑑𝑖𝑎𝑔[1, −𝜔𝑥, −𝜔𝑦 , −𝜔𝑧 ]𝜌                         (8) 

Where 𝜔𝑥, 𝜔𝑦  and 𝜔𝑧  are the directional EoS parameter along the 𝑥, 𝑦, and 𝑧 axes. 

The deviation from isotropy can be obtained as  

𝜔𝑥 = 𝜔, 𝜔𝑦 = 𝜔 + 𝛿 and 𝜔𝑧 = 𝜔 + 𝛾 

Where 𝜔 is the deviation-free EoS parameter of the fluid and the skewness parameters 𝛿  and 𝛾 are the deviation from 

𝜔 along 𝑦 and 𝑧 axes. 

In this case, the energy-momentum tensor becomes: 

𝑇𝜈
𝜇

= 𝑑𝑖𝑎𝑔[1, −𝜔, −(𝜔 + 𝛿), −(𝜔 + 𝛾)]ρ                        (9) 

The average scale factor 𝑎(𝑡)  and the volume scale factor 𝑉is defined by: 

𝑉 = 𝑎3 = 𝐴𝐵𝐶                                        (10) 

The average Hubble parameter 𝐻, expansion scalar 𝜃, and deceleration parameter 𝑞  are defined by: 

𝐻 =
�̇�

𝑎
=

1

3
(𝐻𝑥 + 𝐻𝑦 + 𝐻𝑧 )               (11) 

Where, 𝐻𝑥 =
𝐴̇

𝐴
, 𝐻𝑦 =

�̇�

𝐵
, 𝐻𝑧 =

�̇�

𝐶
 are directional Hubble parameters along 𝑥, 𝑦, and 𝑧 axes, respectively. 

𝜃 = 3𝐻 =
𝐴̇

𝐴
+

�̇�

𝐵
+

�̇�

𝐶
                                  (12) 

𝑞 = −1 +
𝑑

𝑑𝑡
(

1

𝐻
)    (13) 

The deceleration parameter 𝑞  is the most important quantity that can measure the universe's expansion rate depending 

on the sign of 𝑞, and SNe Ia observation data also claimed that if the value of 𝑞  is in between 0 to -1, i.e., −1 < 𝑞 < 0 that 

shows the present expansion of the universe is accelerating. Here, if 𝑞 > 0 indicates expansion is deflation, while 𝑞 < 0 

indicates expansion is inflation. However, 𝑞 = 0, the universe's expansion rate is constant. Therefore, with the help of the 

deceleration parameter, we can easily determine the states of the universe, whether it's inflation or deflation. 

The mean anisotropy parameter 𝐴𝑚  and shear scalar  𝜎 2 are defined by 

𝐴𝑚 =
1

3
∑ (

∆𝐻𝑖

𝐻
)

2

;  𝑖 = 𝑥, 𝑦, 𝑧                   (14) 

Where ∆𝐻𝑖 = 𝐻𝑖 − 𝐻;  𝑖 = 𝑥, 𝑦, 𝑧 

𝜎 2 =
3

2
𝐴𝑚𝐻 2                                                          (15) 

Now, using Equations 4 and 9, the field Equation 3 takes the form: 

−
�̈�

𝐵
−

�̈�

𝐶
−

�̇��̇�

𝐵𝐶
+ 8 (

�̇� �̈�

𝐵𝐶
+

�̈��̇�

𝐵𝐶
) 𝑓�̇� + 8

�̇� �̇�

𝐵𝐶
𝑓�̈� − 𝐺𝑓𝐺 + 𝑓 = 𝜅𝜔𝜌                      (16) 

−
𝐴̈

𝐴
−

�̈�

𝐶
−

𝐴̇ �̇�

𝐴𝐶
+ 8 (

𝐴̇�̈�

𝐴𝐶
+

𝐴̈�̇�

𝐴𝐶
) 𝑓�̇� + 8

𝐴̇�̇�

𝐴𝐶
𝑓�̈� − 𝐺𝑓𝐺 + 𝑓 = 𝜅(𝜔 + 𝛿)𝜌                (17) 
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−
𝐴̈

𝐴
−

�̈�

𝐵
−

𝐴̇�̇�

𝐴𝐵
+

𝛼2

𝐴2 + 8 (
𝐴̇�̈�

𝐴𝐵
+

𝐴̈�̇�

𝐴𝐵
) 𝑓�̇� + 8 (

𝐴̇�̇�

𝐴𝐵
−

𝛼2

𝐴2
) 𝑓�̈� − 𝐺𝑓𝐺 + 𝑓 = 𝜅(𝜔 + 𝛾)𝜌        (18) 

𝐴̇�̇�

𝐴𝐵
+

𝐴̇�̇�

𝐴𝐶
+

�̇� �̇�

𝐵𝐶
−

𝛼2

𝐴2 − 24
𝐴̇�̇� �̇�

𝐴𝐵𝐶
𝑓�̇� + 8

𝛼2

𝐴2 ∙
�̇�

𝐶
𝑓�̇� + 𝐺𝑓𝐺 − 𝑓 = 𝜅𝜌                     (19) 

𝛼 (
𝐴̇

𝐴
−

�̇�

𝐵
) = 0                                                              (20) 

These are complicated and highly non-linear differential equations.  

From Equation 20, we get: 

𝐵 = 𝑐1𝐴                                      (21) 

Here 𝑐1 is the integration constant. Without loss of generality, we can consider 𝑐1 = 1. 

Now, Equation 21 can be written as 

𝐵 = 𝐴                                    (22) 

Consequently, the directional EoS parameters 𝜔𝑥 and 𝜔𝑦  along 𝑥𝑦 axes become identical. So, in this case, the energy-

momentum tensor becomes 

𝑇𝜈
𝜇

= 𝑑𝑖𝑎𝑔[1, −𝜔, −𝜔, −(𝜔 + 𝛾)]ρ                    (23) 

With the relation (22), the field Equations 16, 17, 18, and 19 now take the form 

−
𝐴̈

𝐴
−

�̈�

𝐶
−

𝐴̇ �̇�

𝐴𝐶
+ 8 (

𝐴̇�̈�

𝐴𝐶
+

𝐴̈�̇�

𝐴𝐶
) 𝑓�̇� + 8

𝐴̇�̇�

𝐴𝐶
𝑓�̈� − 𝐺𝑓𝐺 + 𝑓 = 𝜅𝜔𝜌                                   (24) 

−2
𝐴̈

𝐴
−

𝐴̇2

𝐴2 +
𝛼2

𝐴2 + 16
𝐴̇𝐴̈

𝐴2 𝑓�̇� + 8 (
𝐴̇ 2

𝐴2 −
𝛼2

𝐴2
) 𝑓�̈� − 𝐺𝑓𝐺 + 𝑓 = 𝜅(𝜔 + 𝛾)𝜌                   (25) 

𝐴̇2

𝐴2 + 2
𝐴̇�̇�

𝐴𝐶
−

𝛼2

𝐴2 + 8 (
𝛼2

𝐴2 ∙
�̇�

𝐶
− 3

𝐴̇2�̇�

𝐴2𝐶
) 𝑓�̇� + 𝐺𝑓𝐺 − 𝑓 = 𝜅𝜌                                           (26) 

Here, we use a physical condition that the shear scalar 𝜎 and the expansion scalar 𝜃 are proportional to each other 
(𝜎 ∝ 𝜃) , which leads to  

𝐶 = 𝐴𝑛                                             (27) 

The above condition (27) has already been used in the literature [26-28] to obtain the precise solution of the field 

equation. 

Where 𝑛 is an arbitrary real number and 𝑛 ≠ 0,1 for non-trivial solutions. 

Thus, with Equation 27, the field Equations 24, 25, and 26 reduces to: 

−(𝑛 + 1) 𝐴̈

𝐴
− 𝑛2 𝐴̇2

𝐴2
+ 8 (2𝑛

𝐴̇ 𝐴̈

𝐴2
+ 𝑛(𝑛 − 1) 𝐴̇ 3

𝐴3
) 𝑓�̇� + 8𝑛

𝐴̇2

𝐴2
𝑓�̈� − 𝐺𝑓𝐺 + 𝑓 = 𝜅𝜔𝜌              (28) 

−2
𝐴̈

𝐴
−

𝐴̇2

𝐴2 +
𝛼2

𝐴2 + 16
𝐴̇ 𝐴̈

𝐴2 𝑓�̇� + 8 (
𝐴̇ 2

𝐴2 −
𝛼2

𝐴2
) 𝑓�̈� − 𝐺𝑓𝐺 + 𝑓 = 𝜅(𝜔 + 𝛾)𝜌                                (29) 

(1 + 2𝑛) 𝐴̇2

𝐴2 −
𝛼2

𝐴2 + 8𝑛 (
𝛼2

𝐴2 ∙
𝐴̇

𝐴
− 3

𝐴̇ 3

𝐴3
) 𝑓�̇� + 𝐺𝑓𝐺 − 𝑓 = 𝜅𝜌                                                      (30) 

This is a system of three differential equations in four unknowns 𝐴, 𝜌, 𝜔, 𝛾. Hence, to find a determinate solution to 

Equations 28-30, we adopt the following scale factor, which is a combination of exponential and hyperbolic functions 

known as the hyperbolic hybrid scale factor [29]: 

𝑎 = 𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ (𝑡))
𝑛

                                  (31) 

Where 𝑚, 𝑛 are positive constants.   

Here, both the exponential and hyperbolic functions are dependent on time, admitting a point -type singularity in which  

the model begins to expand with the BigBang for the time 𝑡 = 0.  Esmaeili [30] mentioned the role of scaling constants, 

which is vital if the parametrization scale factor is in the form of hyperbolic. In the Bianchi type V model, Mishra, et al. 

[31] found the universe with hyperbolic scale factor transits from early cosmic deceleration to late cosmic acceleration. 

With the exponential scale factor, the universe shows an accelerated expansion of the universe at a  late time.  

After using Equation 31 in Equation 10, metric potential becomes 

𝐴 = 𝐵 = [𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ (𝑡))
𝑛

]
3

(𝑛+2)⁄
                                  (32) 

𝐶 = [𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ(𝑡) )
𝑛

]
3𝑛

(𝑛+2)⁄
                                           (33) 

By the result of Equations 32 and 33, the directional Hubble parameter 𝐻𝑥, 𝐻𝑦 𝐻𝑧 can be obtained as 

𝐻𝑥 = 𝐻𝑦 =
3(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))

(𝑛+2)𝑠𝑖𝑛ℎ (𝑡)
 and 𝐻𝑧 =

3𝑛(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))

(𝑛+2)𝑠𝑖𝑛ℎ (𝑡)
   (34) 

So, model (4) with Equations 32 and 33 takes the form 

𝑑𝑠2 = 𝑑𝑡2 − [𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ (𝑡))
𝑛

]
6

(𝑛+2)⁄
𝑑𝑥2 − [𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ(𝑡))

𝑛
]

6
(𝑛+2)⁄

𝑒−2𝛼𝑥𝑑𝑦2 −  [𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ(𝑡))
𝑛

]
6𝑛

(𝑛+2)⁄
𝑑𝑧2(35) 

 

The Ricci scalar and the Gauss-Bonnet invariant are  

𝑅 =
6𝑛

(𝑠𝑖𝑛ℎ (𝑡))
2 −

18(𝑛2+2𝑛+3)(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ(𝑡))
2

(𝑛+2)2(𝑠𝑖𝑛ℎ (𝑡))
2 +

2𝛼2

(𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ (𝑡))
𝑛

)
6

(𝑛+2)⁄
           (36) 

𝐺 =
24𝐴2𝑛2 (𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ (𝑡))

𝑛
)

−6
(𝑛+2)⁄

(𝑛+2)(𝑠𝑖𝑛ℎ (𝑡))
2 −

144 𝐴2𝑛(𝑒𝑚𝑡(𝑠𝑖𝑛ℎ (𝑡))
𝑛

)
−6

(𝑛+2)⁄
(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ(𝑡))

2

(𝑛+2)2(𝑠𝑖𝑛ℎ (𝑡) )
2 −

648𝑛 (𝑛 −(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
2

)(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛+2)3(𝑠𝑖𝑛ℎ (𝑡))
4                                      (37) 
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The volume, Hubble parameter, expansion scalar, deceleration parameter, mean anisotropy, and shear scalar are: 

𝑉 = [𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ(𝑡))
𝑛

]
3
   (38) 

 

𝐻 =
𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡)

𝑠𝑖𝑛 ℎ (𝑡)
  (39) 

 

𝜃 = 3 (
𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡)

𝑠𝑖𝑛ℎ (𝑡)
)   (40) 

 

𝑞 = −1 +
𝑛

(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
2  (41) 

 

         𝐴𝑚 =
2(𝑛−1)2

(𝑛+2)2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   (42) 

 

𝜎 2 =
3(𝑛−1)2 (𝑚𝑠𝑖𝑛ℎ (𝑡) +𝑛𝑐𝑜𝑠ℎ(𝑡))

2

(𝑛+2)2(𝑠𝑖𝑛ℎ (𝑡))
2   (43) 

 

 
Figure 1. Hubble parameter(𝐻), Expansion scalar(𝜃) , and Shear scalar (𝜎2) vs. time (Gyr). 

 

Here, Figure 1 illustrates the Hubble parameter, Expansion scalar, and shear scalar as a function of time ′𝑡′ showcasing 

initially massive, which means 𝐻, 𝜃, 𝜎 2 → ∞ when 𝑡 → 0 and at 𝑡 → ∞, the model's parameters converge to a constant 

value. From Equation 38, it is observed that thevolume is zero with 𝑡 = 0, and the model is expanding with 𝑉 → ∞ when 

𝑡 → ∞. The positive value of the Hubble parameter (𝐻 > 0) indicates the model is expanding, whereas a negative value 
(𝐻 < 0) shows the model is contracting. At 𝑡 = 90, the Hubble parameter yields results𝐻 = 𝑚  which match the result of 

Shaikh, et al. [18] in which the Hubble parameter is dependent on constant ′𝑚′  and consequently 
𝑑𝐻

𝑑𝑡
= 0 implies the fastest  

rate of expansion of the universe and the most significant value of Hubble's parameter. Equation 42 shows that the mean 

anisotropy parameter 𝐴𝑚  depends on constant ′𝑛′  and 𝐴𝑚 ≠ 0 for 𝑛 ≠ 1while 𝐴𝑚 = 0 for𝑛 = 1. Therefore, the model of 

the universe reflects expanding anisotropicallyfor 𝑛 ≠ 1 while the model is isotropic for𝑛 = 1. 

 

3. Bianchi Type-III Universe with Power-Law 𝒇(𝑮) Model 
Considering the power-law 𝑓(𝐺) model [2] with: 

𝑓(𝐺) = 𝛽𝐺𝑚+1                    (44) 

Where 𝛽 and 𝑚 are unknown constants. 

According to Nojiri, et al. [32], these power-law 𝑓(𝐺) models, which predict early-time inflation and late-time 

acceleration, are consistent with the observational evidence. If the second derivative of 𝑓(𝐺) with respect to 𝐺 is 

divergence at 𝐺 = 0, then the power-law 𝑓(𝐺) is not cosmologically viable, according to De Felice and Tsujikawa [33]. 

Furthermore, taking into account the previously mentioned power-law 𝑓(𝐺) model, Shamir investigated about anisotropic 

[16] and dark energy [17] cosmological models for spatially homogenous, anisotropic, locally rotationally symmetric 

(LRS) Bianchi type-I line elements. Using the same line element, Shaikh, et al. [18]investigated three distinct forms of 

expansion laws (volumetric, power-law, and hybrid) for the holographic dark energy model. 

From Equation 44, it follows that 
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𝑓𝐺
(𝐺) = 𝛽(𝑚 + 1)𝐺𝑚                                    (45) 

Here, we choose 𝛽 = 1
(𝑚 + 1)⁄  for further analysis. From Equation 45, we may obtain: 

𝑓�̇� = 𝑚𝐺𝑚−1�̇�,        �̈�𝐺 = 𝑚(𝐺𝑚−1�̈� + (𝑚 − 1)𝐺𝑚−2�̇�2)                          (46) 

Where  𝐺 =
24𝐴2 𝑛2(𝑒𝑚𝑡(𝑠𝑖𝑛ℎ (𝑡) )

𝑛
)

−6
(𝑛+2)⁄

(𝑛+2)(𝑠𝑖𝑛ℎ (𝑡))
2 −

144𝐴2𝑛(𝑒𝑚𝑡 (𝑠𝑖𝑛ℎ (𝑡))
𝑛

)
−6

(𝑛+2)⁄
(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ(𝑡) )

2

(𝑛+2)2 (𝑠𝑖𝑛ℎ (𝑡))
2 −

648𝑛 (𝑛 −(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
2

)(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛+2)3(𝑠𝑖𝑛ℎ (𝑡))
4  

Now, using Equations 32, 37, 44, 45, and 46, we get the expression of energy density and pressure along 𝑥, 𝑧-axes as 

follows. 

𝜌 =
1

𝜅
[

9(2𝑛 +1)(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ(𝑡) )
2

(𝑛+2)2(𝑠𝑖𝑛 ℎ (𝑡))
2 −

𝛼2

(𝑒𝑚𝑡 (sinh (𝑡))𝑛)
6

(𝑛+2)⁄
+ 8𝑛 (

3𝛼2(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))

(𝑛+2)𝑠𝑖𝑛ℎ (𝑡)(𝑒𝑚𝑡 (sinh (𝑡))𝑛)
6

(𝑛+2)⁄
−

81(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
3

(𝑛+2)3(𝑠𝑖𝑛ℎ (𝑡))
3 ) 𝑓�̇� +

𝐺𝑓𝐺 − 𝑓]                                         (47) 

𝑝𝑥 = 𝑝𝑦 =
1

𝜅
[

3𝑛 (𝑛 + 1)

(𝑛 + 2)(𝑠𝑖𝑛ℎ (𝑡))
2 −

9(𝑛2 + 𝑛 + 1)(𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛 + 2)2(𝑠𝑖𝑛ℎ (𝑡))
2 + 8𝑛 (

−18𝑛 (𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))

(𝑛 + 2)2(𝑠𝑖𝑛ℎ(𝑡) )
3  

+
27(𝑛+1)(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))

3

(𝑛+2)3 (𝑠𝑖𝑛ℎ (𝑡))
3 ) 𝑓�̇� +

72𝑛 (𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛+2)2 (𝑠𝑖𝑛ℎ (𝑡))
2 𝑓�̈� − 𝐺𝑓𝐺 + 𝑓]                              (48) 

𝑝𝑧 =
1

𝜅
[

6𝑛

(𝑛+2)(𝑠𝑖𝑛ℎ (𝑡))
2 −

27(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ(𝑡))
2

(𝑛+2)2(𝑠𝑖𝑛ℎ (𝑡))
2 +

𝛼2

(𝑒𝑚𝑡(sinh (𝑡))𝑛)
6

(𝑛+2)⁄
+

 (
432(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ(𝑡))

3

(𝑛+2)3 (𝑠𝑖𝑛ℎ (𝑡))
3 −

144𝑛 (𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))

(𝑛+2)2 (𝑠𝑖𝑛ℎ (𝑡))
3 ) 𝑓�̇� + (

72(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ(𝑡))
2

(𝑛+2)2(𝑠𝑖𝑛ℎ (𝑡))
2 −

8𝛼2

(𝑒𝑚𝑡(sinh  (𝑡))𝑛)
6

(𝑛+2)⁄
) 𝑓�̈� − 𝐺𝑓𝐺 + 𝑓]                                       

(49) 

 

The expression of the Equation of state parameter (EoS) is defined as 𝜔 =
𝑝

𝜌
, so from Equations 47 and 48, it becomes 

 

𝜔 = [
3𝑛 (𝑛 + 1)

(𝑛 + 2)(𝑠𝑖𝑛ℎ (𝑡))
2 −

9(𝑛2 + 𝑛 + 1)(𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛 + 2)2(𝑠𝑖𝑛ℎ (𝑡))
2 + 8𝑛 (

−18𝑛 (𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))

(𝑛 + 2)2(𝑠𝑖𝑛ℎ(𝑡) )
3  

+
27(𝑛 + 1)(𝑚𝑠𝑖𝑛ℎ (𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))

3

(𝑛 + 2)3(𝑠𝑖𝑛ℎ(𝑡) )
3 ) 𝑓�̇� +

72𝑛 (𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛 + 2)2(𝑠𝑖𝑛ℎ(𝑡) )
2 𝑓�̈� − 𝐺𝑓𝐺 + 𝑓]

/ [
9(2𝑛 + 1)(𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))

2

(𝑛 + 2)2(𝑠𝑖𝑛ℎ (𝑡) )
2 −

𝛼 2

(𝑒𝑚𝑡 (sinh (𝑡))𝑛)
6

(𝑛+2)⁄

+ 8𝑛 (
3𝛼2(𝑚𝑠𝑖𝑛ℎ (𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))

(𝑛 + 2)𝑠𝑖𝑛ℎ (𝑡) (𝑒𝑚𝑡 (sinh (𝑡) )𝑛)
6

(𝑛 +2)⁄
 

 

−
81(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))

3

(𝑛+2)3(𝑠𝑖𝑛 ℎ (𝑡))
3 ) 𝑓�̇� + 𝐺𝑓𝐺 − 𝑓]    (50) 

 

The skewness parameter 𝛾 can describe the amount of anisotropy in the dark energy fluid , and for this model, we get  

𝛾 = [−
3𝑛(𝑛 − 1)

(𝑛 + 2)(𝑠𝑖𝑛ℎ (𝑡))
2 +

9(𝑛2 + 𝑛 − 2)(𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛 + 2)2(𝑠𝑖𝑛ℎ (𝑡))
2 +

𝛼 2

(𝑒𝑚𝑡 (sinh (𝑡) )𝑛)
6

(𝑛+2)⁄
− 8(𝑛 − 1) 

(−
18𝑛 (𝑚𝑠𝑖𝑛ℎ (𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡) )

(𝑛 + 2)2(𝑠𝑖𝑛ℎ (𝑡))
3 +

27(𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ(𝑡) )
3

(𝑛 + 2)2(𝑠𝑖𝑛ℎ (𝑡) )
3 ) 𝑓�̇� − 8 (

9(𝑛 − 1)(𝑚𝑠𝑖𝑛ℎ (𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛 + 2)2(𝑠𝑖𝑛ℎ (𝑡) )
2  

+
𝛼2

(𝑒𝑚𝑡 (sinh (𝑡))𝑛)
6

(𝑛+2)⁄
] 𝑓�̈� / [

9(2𝑛+1) (𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
2

(𝑛+2)2(𝑠𝑖𝑛ℎ (𝑡))
2 −

𝛼2

(𝑒𝑚𝑡 (sinh (𝑡))𝑛)
6

(𝑛+2)⁄
+

           8𝑛 (
3𝛼2 (𝑚𝑠𝑖𝑛ℎ (𝑡) +𝑛𝑐𝑜𝑠ℎ(𝑡))

(𝑛 +2)𝑠𝑖𝑛ℎ(𝑡) (𝑒𝑚𝑡(sinh (𝑡))𝑛)
6

(𝑛+2)⁄
−

81(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ(𝑡) )
3

(𝑛+2)3(𝑠𝑖𝑛ℎ (𝑡) )
3 ) 𝑓�̇� + 𝐺𝑓𝐺 − 𝑓]  (51) 

 

3.1. Energy Conditions 

Energy conditions generated from the Raychaudhuri equation play a significant role in the modified cosmological 

model. Sharif and Fatima [14];Shamir [17];Bamba, et al. [34], and García, et al. [35] have presented the energy condition in 

𝑓(𝐺) gravity to assess the model's viability and provide some significant insight in their work. The energy conditions are a 

crucial tool to describe the singularity problems of spacetime and explain the nature of null, time -like, or light-like 

geodesics. Generally, the energy conditions are classified as (i) the null energy condition (NEC), (ii) the weak energy 
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condition (WEC), (iii) the strong energy condition (SEC), and (iv) the dominant energy condition (DEC) and can be 

expressed as follows: 

(1) NEC: 𝜌 + 𝑝𝑥 ≥ 0, 𝜌 + 𝑝𝑧 ≥ 0 

(2) WEC:𝜌 ≥ 0, 𝜌 + 𝑝𝑥 ≥ 0, 𝜌 + 𝑝𝑧 ≥ 0 

(3) SEC: 𝜌 + 3𝑝𝑥 ≥ 0, 𝜌 + 3𝑝𝑧 ≥ 0, 𝜌 + 𝑝𝑥 ≥ 0, 𝜌 + 𝑝𝑧 ≥ 0 

(4) DEC: 𝜌 ≥ 0, 𝜌 ± 𝑝𝑥 ≥ 0, 𝜌 ± 𝑝𝑧 ≥ 0 

We also analyze these energy conditions for the given power-law 𝑓(𝐺)  model.  

 

3.2. Statefinder Parameter 

The statefinder parameter {𝑟, 𝑠} proposed by Sahni, et al. [36] can distinguish features of the dark energy models and is 

defined as  

𝑟 =
𝑎

𝑎𝐻3 = 1 +
3�̇�

𝐻2 +
�̈�

𝐻3 , (52) 

𝑠 =
𝑟−1

3(𝑞 −
1

2
)

=
−2(3𝐻 �̇�+�̈�)

3𝐻 (3𝐻2 +2�̇�)
 (53) 

Here 𝐻 is the Hubble parameter, and the dot represents the differentiation with respect to time ‘t’. With Equation 39, 

the statefinder pair {𝑟, 𝑠} can take the form 

r =
(𝑚3 − 3𝑚𝑛) (𝑠𝑖𝑛ℎ(𝑡) )

3
+ 𝑛(𝑛2 − 3𝑛 + 2)(𝑐𝑜𝑠ℎ(𝑡) )

3

(𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ(𝑡))
3 +

𝑛(3𝑚2 − 3𝑛 + 2)(𝑠𝑖𝑛ℎ(𝑡) )
2

𝑐𝑜𝑠ℎ(𝑡)

(𝑚𝑠𝑖𝑛ℎ (𝑡) + 𝑛𝑐𝑜𝑠ℎ(𝑡) )
3   

+
3𝑚𝑛(𝑛 − 1)𝑠𝑖𝑛ℎ (𝑡) (𝑐𝑜𝑠ℎ(𝑡))

2

(𝑚𝑠𝑖𝑛ℎ(𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))
3  

𝑠 =
4𝑛(3𝑛 − 2)(𝑐𝑜𝑠ℎ (𝑡))3 + 12𝑚𝑛𝑠𝑖𝑛ℎ (𝑡)(𝑐𝑜𝑠ℎ(𝑡))2 + 2𝑛(2 − 3𝑛) 𝑐𝑜𝑠ℎ(𝑡) − 6𝑚𝑛𝑠𝑖𝑛ℎ(𝑡)

3(𝑚𝑠𝑖𝑛ℎ (𝑡) + 𝑛𝑐𝑜𝑠ℎ (𝑡))(2𝑛 − 4𝑛(𝑐𝑜𝑠ℎ (𝑡))2 + 3𝑚2(𝑠𝑖𝑛ℎ (𝑡))2 + 3𝑛2(𝑐𝑜𝑠ℎ(𝑡))2 + 6𝑚𝑛𝑠𝑖𝑛ℎ(𝑡)𝑐𝑜𝑠ℎ(𝑡))
 

 

 
Figure 2. Statefinder parameter{𝑟, 𝑠}  vs. time (Gyr). 

 

From Figure 2, it is seen that the model initially 𝑟 < 1,𝑠 > 0 indicates quintessence and phantom dark energy, and at 

𝑡 → ∞, we get the pair {𝑟, 𝑠} → {1,0} which shows that the model corresponds to 𝛬 CDM model in future. 

 

4. Results and Discussion 
In this paper, we investigated cosmological models consistent with the𝑓(𝐺)gravity theory. The models discussed in 

this study have the following prominent features: 
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Figure 3. Energy density(𝜌), Pressure along x,z- axes(𝑝𝑥, 𝑝𝑧) vs. time (Gyr). 

 

Equations 47, 48, and 49, which describe the behavior of energy density and pressure along the 𝑥  and 𝑧 axes, offer a 

consistent solution for the parametric values 𝑚 = 6, 𝑛 = 2, and 𝛼 = 0.02. As depicted in Figure 3, the energy density starts 

relatively high and gradually reduces as time passes; however, it remains in a favorable region throughout the evolution. It 

is also observed that the value 𝑚 > 1, 𝑛 = 1,2,3, and 𝛼 = 0.02 the energy density are always positive and converge to zero  

at a  later time. On the other hand, the result obtained in 𝑓(𝑅 , 𝑇) gravity for LRS Bianchi type I [29] is quite different 

compared to ours. The evolution of pressure along the 𝑥, 𝑧-axes is negative for 0 < 𝑡 < 14, and eventually, as time 

progresses, the evolution of pressure approaches constant value for both 𝑥, 𝑧 axes.  

 

 
Figure 4. Deceleration parameter(𝑞) vs. time(Gyr). 

 

The deceleration parameter 𝑞 = −1 +
𝑛

(𝑚𝑠𝑖𝑛ℎ (𝑡)+𝑛𝑐𝑜𝑠ℎ (𝑡))
2 exhibits sign-flipping behavior from early deceleration to 

present acceleration depending on the value of ′𝑛′ as depicted in Figure 4. It is seen that the deceleration parameter 𝑞 =

−1 +
1

𝑛
> 0 for 0 < 𝑛 < 1 and when the value of ′𝑛′ rise up (𝑛 > 1) falls with the exponential expansion of the universe 

(−1 < 𝑞 < 0)[29] and setting up with de-sitter expansion 𝑞 = −1 at 𝑡 → ∞ . Tiwari, et al. [37] presented the decelerating 

and accelerating phase of the universe dependent on constant value ′𝑛′ with Bianchi type III string cosmological model. 

They mentioned the present value of the universe 𝑞0 = −0.92. From Equation 41, we can also have 𝑞0~0.99 fo r 𝑡0 = 13.8 

Gyr(Gigayear), and, here 𝑡0 ,𝑞0 are the present time and present value of the deceleration parameter. Therefore, the value of 

the deceleration parameter is consistent with the current observational data.  
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Figure 5. Equation of State parameter(𝜔) vs. time(Gyr). 

 

The EoS parameter, 𝜔shownin Figure 5, is one of the most important parameters that can be used to interpret the 

different regimes of the universe. Figure 5 shows that the universe transits from the early decelerated phase to the current 

accelerated phase depending on time 't'. Initially, the EoS parameter is dominated by the matter-dominated era (0 < 𝜔 <
1/3)dependingon the time 0 < 𝑡 < 0.08, and, later gradually stabilizes in the quintessence phase (−1 < 𝜔 < 0)for 0.08 <
𝑡 < 14, which corresponds to the ΛCDM model (𝜔 = −1)at𝑡 → ∞ . Furthermore, the EoS parameter has been constrained 

by many observational data, which are WMAP+CMB, 𝜔 = −1.073−0.089
+0.090 [38] WMAP+Supernova, 𝜔 = −1.084 ±

0.063 [38] Supernova Cosmology Project, 𝜔 = −1.035−0.059
+0.055 [39] Planck 2018,𝜔 = −1.03 ± 0.03 [40]. Here, for 𝑡0 =

13.8 Gyr, we also have 𝜔0~0.99 one compatible with the above observational data. 

 

 
Figure 6. Skewness parameter(𝛾) vs. time(Gyr). 

 

In the derived model, the evolutionary behavior of the skewness parameter 𝛾 is depicted in Figure 6, showing both 

positive and negative values for a significant time 't'. In literature Shamir [17]and Malik, et al. [41], similar behavior of the 

skewness parameter is noticeable based on the LRS Bianchi type I line element for a different value of  ‘n’. In our present 

study, initially, it yielded a negative value for 0 < 𝑡 < 0.02, obtaining the parametric values 𝑚 = 6, 𝑛 = 2; later, it 

transformed into a positive value for 𝑡 ≈ 0.03. It is also pointed out that the skewness parameter 𝛾 reduces to an isotropic 

nature of the universe for 𝑚 = 0 and 𝑛 = 1 at the late time. 
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Figure 7.Energy condition (NEC, DEC, SEC) along x,z- axes vs. time(Gyr). 

 

Figure 7 shows that the NEC, WEC, and DEC are well satisfied along the 𝑥, 𝑧 −axes with violation of SEC against 

time‘t’. Here, to explain the present expansion of the universe, researchers focus more on the violation of SEC since t he 

violation of SEC is the only energy condition responsible for the presence of dark energy with negative pressure. As a 

result, a  violation of SEC can be seen in Figure 7; therefore, we can say that the model supports the universe's present 

expansion for 0 < 𝑡 < 14.  

 

5. Conclusion 
This work investigates an anisotropic and spatially homogenous Bianchi type III cosmological model with 𝑓(𝐺) 

gravity in the presence of an anisotropic dark energy fluid. The hyperbolic hybrid scale factor [29] is used to analyze the 

exact solution of the Bianchi type III model, and the power-law 𝑓(𝐺) = 𝛽𝐺𝑚+1model that was chosen for this purpose is 

compatible with observational data. The hyperbolic hybrid scale factor yields a sign -flipping deceleration parameter from 

early deceleration to present acceleration, where the parametric value ‘𝑛’  is important. The model describes the expansion, 

shearing, and anisotropic nature of the universe throughout time, and the behavior of the model parameters is in good 

accord with the observational data. Throughout the entire cosmic development, the energy density is positive, wh ich is 

consistent with the parametric values 𝑚 = 6, 𝑛 = 2, 𝛼 = 0.02. Additionally, the presence of dark energy is observed in the 

result of negative pressure(𝑥, 𝑧 − 𝑎𝑥𝑒𝑠), and at 𝑡 → ∞, the quintessence form of dark energy reaches to 𝛬𝐶𝐷𝑀  model [42]. 

In contrast, the statefinder parameter {𝑟, 𝑠} leads to the same result. The skewness parameter 𝛾 demonstrates the 

amount of anisotropy in the dark fluid, starting with a negative value, but for𝑡 ≈ 0.03, the value 𝛾 tends to be positive. At 

𝑡 → ∞ the value of  𝛾 ≠ 0, therefore, the model of the universe always stays in the anisotropic phase and does  not 

transform into an isotropy phase in the future. 

Furthermore, in the case of 𝛾 = 0 the fluid’s anisotropy is eliminated in the universe's future evolution [21, 43]. The 

energy conditions such as NEC, WEC, and DEC are satisfied with the entire evolution except the SEC, and the violation of  

the SEC represents the anisotropic universe in𝑓(𝐺)gravity that dominates the universe's current expansion. Therefore, we 

can conclude that the Bianchi type III cosmological model in 𝑓(𝐺) gravity substantially supports the universe's current 

expansion in the presence of anisotropic dark fluid, in which the model evolves with the quintessence model at the present 

and 𝛬CDM model in the future. Furthermore, more research can be carried out in 𝑓(𝐺) gravity to investigate the universe's 

current scenario and its evolution within the Bianchi type III model. 
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