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Abstract 

Low-rate stealthy Distributed Denial of Service (DDoS) attack results by affecting the cloud pricing model is a new form of 

attack called Economic Denial of Sustainability (EDoS). Existing mitigation models such as EDoS Shield, Controlled 

Access, and EDoS Eye can partially eliminate EDoS. Firstly, these schemes overlook the attacker’s strategy profile, making 

their defensive system less resilient. Secondly, using predefined or static threshold values set by some schemes makes the 

defensive system vulnerable to more false alarms. Thirdly, they use authentication mechanisms like Graphical Turing Test, 

Crypto Puzzle, or similar graphic-based authentication mechanisms for each new client to identify botnets and filter out 

malicious traffic. These mechanisms contribute to higher response time. To successfully defend against EDoS attacks, 

particularly against clever rational attackers, a defender or defensive system needs to choose an optimal defense strategy 

considering the attacker’s intent. Therefore, we propose Advanced EDoS Eye, a dynamic game theory-based model using 

non-cooperative, zero-sum multistage game theory in this paper. The proposed analytical Dynamic Game-based Decision 

Module (D-GBDM) in firewall instance generates dynamic threshold values, substantially reducing the EDoS effect’s 

payoff in cloud computing. Overall, experimental results favour the proposed model by ensuring the Quality of Service 

(QoS) of the defense system in the cloud. 
 

 Keywords: Cloud computing, Game theory, Dynamic game-based decision module, Economic denial of sustainability, Nash 

equilibrium, Quality of service. 
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1. Introduction 

Cloud or utility computing is economically favorable over conventional hosting. The elasticity feature enables cloud 

services to allocate or deallocate cloud resources dynamically. Auto-scaling up or provisioning cloud resources is not a cost 

optimization technique but rather an operational requirement. In contrast, scaling down elasticity keeps the expenditure 

steady [1]. Moreover, enterprise-level consumers operating globally require faster end-to-end response time, which can be 

obtained by distributing request loads to multiple clouds in many locations [2]. In an ideal case, this new paradigm operates 

according to consumers’ needs and demands. Thus, proper auto-scaling of cloud resources ensures end users a good 

experience and Quality of Service (QoS) [3]. 

However, both pay-as-you-go and auto-scaling features have some adverse effects. The Distributed Denial of Service 

(DDoS) attacker cannot turn down the cloud services due to its resource abundance, despite individual cloud consumers 

still being the victim of this attack [4]. An attacker in the form of DDoS floods a targeted server in the cloud with hundreds 

or thousands of zombie machines. As a result, these overloaded illegitimate requests trigger the auto-scaling feature of the 

cloud to fulfil the operational demand. The effect of such high-scale provisioning ends with an unexpectedly large bill to 

the victim cloud consumer due to the pay-as-you-go feature. This emerging threat is known as the Economic Denial of 

Sustainability (EDoS) in the literature [5]. EDoS is a kind of DDoS that manipulates vulnerable pricing models in cloud 

computing [6]. The enormous financial damage caused by EDoS attacks may lead many organizations towards the 

withdrawal of cloud services or, in the worst case, bankruptcy. It is a subtle type of attack that mostly remains unnoticed. 

Therefore, existing solutions for EDoS [3, 7-17] are still in the early stages. EDoS-Shield [8, 17, 18] uses the Graphical 

Turing Test, a similar authentication approach, to differentiate humans from bots. The model separates humans from bots 

with the presumption that all EDoS attackers are bots and all humans are valid users. This predefined idea makes the model 

partially successful. Firstly, an EDoS attacker launches an attack strategically as well as intelligently. Hence, consideration 

of the attacker’s profile is crucial. Secondly, if an EDoS attacker exploits the illegitimate traffic inside the cloud, how will 

the cloud firewall respond, and how will the firewall act with rate limiting technique? If the rate limiting technique is static, 

how will it detect low-rate EDoS traffic or dynamic EDoS traffic generated by the attacker, and how will cloud services 

ensure QoS while mitigation occurs? Thirdly, use of the Graphical Turing Test or Crypto Puzzle increases the 

computational time. In addition, it may also create problems for disabled and visually impaired people. Besides, the cloud 

itself has an authentication mechanism for some services. As a result, it is a question about how a different authentication 

process would integrate with the existing authentication mechanism. The literature on EDoS mitigation models needs to 

address these fundamental questions. 

Recently, game theory has been used to mitigate DDoS attacks and was effective in some cases [19-21]. Wang, et al. 

[22] proposed a model based on dynamic game theory to defend botnet. Game theory is a series of analytical tools to design 

and formulate interaction between multiple players competing under certain conditions. A game consists of a set of 

strategies where the total plan of all possible actions a player can take. Strategies can be pure or mixed. A pure strategic 

game is like a single-shot static game where a player chooses the strategy initially and cannot alter it until the end. On the 

other hand, a mixed strategy or dynamic game consists of multiple stages where players can change their strategies at any 

point. The outcomes of the game depend on the best possible strategies taken by each player. Nash Equilibrium is one such 

solution that represents the steady state of the game. Nash Equilibrium can be found in a non-cooperative game involving at 

least two players. No player can benefit more by deviating from a state, assuming the opponent’s state remains unchanged. 

The game can be either a zero-sum game or a non-zero-sum game. One important topic of the zero-sum game is finding the 

saddle point. The saddle point theorem is a single or multiple equilibrium pair(s) of strategies in a game matrix. In each 

equilibrium pair of the saddle point, row and column coexist in the exact location where the former has a minimum value, 

and the latter has a maximum value.  

To the best of our knowledge, EDoS Eye Chowdhury, et al. [23] is the first game theory-based approach in literature 

for EDoS mitigation. Analyzing the behavior or strategic mindset is a crucial factor in real-life scenarios. In doing so, 

EDoS Eye analyses the attacker profile effectively by finding the optimal strategy for the defender in a zero-sum, non-

cooperative static game. The optimal threshold value is obtained through Nash Equilibrium which helps reducing the EDoS 

attacker’s payoff. In this model, all the traffic flows are determined using a primary controller named Game-based Decision 

Module (GBDM) which is embedded in the cloud firewall. The model also incorporates a honeypot to minimize the EDoS 

effect further. However, in a real-life scenario, the actions of rational attackers and rational defenders are not static. In other 

words, a single-shot static game is impractical in a real-life conflict between attackers and defenders. As the set of actions 

https://creativecommons.org/licenses/by/4.0/
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changes over time, dynamic game modelling is better suited for a real-life conflict. This phenomenon is primarily attributed 

to improving the existing Game-based Dynamic Module (GBDM) in EDoS Eye. In addition, EDoS Eye does not evaluate 

the response time and other parameters to ensure QoS in the cloud. The static game also limits the real-time evaluation of 

attackers’ and defenders’ strategic profiles. 

In Lalropuia and Khaitan [24] the authors proposed a novel game theoretic model for interactions between EDoS 

attackers and defenders. The authors derive the best defense strategies, responding to EDoS attacks by computing Perfect 

Bayesian Nash Equilibrium (PBE), including the pooling PBE, separating PBE, and mixed strategy PBE. The model 

provides insights into the dynamics of EDoS attacks and offers strategies for defenders to optimize their payoff. However, 

due to its overly simplified approach, the model may not capture all the complexities and nuances of real-world EDoS 

attacks. 

This paper contains six (06) sections. The architecture of the proposed Advanced EDoS Eye is presented in Section 2. 

Section 3 describes the game-based analysis of the Advanced EDoS Eye in two phases. Simulation results are depicted in 

Section 4. Section 5 demonstrates the validation part of the proposed model. Finally, the discussion and concluding remarks 

are presented in Section 6. 

 

2. The Proposed Model: Advanced EDoS Eye 
Figure 1 illustrates the overall architecture of the proposed Advanced EDoS Eye. The aggregate traffic flows are 

distributed through the load balancer. After packet inspection in firewall instances, filtered traffic reaches the target VMs or 

application instances. The communication link between the firewall and target VMs is prone to congestion. The topology is 

similar to the EDoS Eye model [23] except that it replaces the Game-based Decision Module (GBDM) with a more 

advanced D-GBDM module.  GBDM is a static game theory-based decision module to route the traffic. On the other hand, 

D-GBDM is a dynamic game-theory-based decision module to route the traffic, which changes over time with respect to 

EDoS attacker strategy. D-GBDM identifies both the attacker and defender’s optimal strategies through saddle points. 

Similar to the EDoS Eye model [23] a honeypot is also incorporated in the proposed model. Researchers [25-27] consider 

honeypots as an effective supplementary strategy in advanced intrusion detection systems, which can keep the false rate to 

a minimum. 
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Figure 1 

Topology for the proposed Advanced EDoS Eye. 

 

2.1. Underlying Assumptions for the Traffic Flow of Advanced EDoS Eye 

We propose the Advanced EDoS Eye model considering the following assumptions: 

1. Attacking Nodes/VMs/Bots are controlled by a single attacker. 

2. All the traffic per Node/VM/Bot represents a unique flow. 

3. Unlimited Bandwidth (BW) is available in the cloud, especially the BW between edge and firewall instances. 

4. Any side channel or co-resident attack is out of the scope of this research work. 

5. Both valid and malicious traffic generate UDP traffic. i.e., we are considering application-level traffic only. 

6. All incoming traffic, whether valid or malicious, enters the cloud data center following Poisson distribution. 

 

2.2. Traffic Flow Analysis and Its Functionality 

The inbound traffic flows in cloud computing typically follow the Poisson distribution [28]. In the experiment, it is 

considered only application-level traffic. The total flow (λ) distributed to Load Balancer (LB) such as λ = λ1, λ2, …, λn to 

numerous virtual firewall instances (VF1, VF2, …, VFn). We introduce Dynamic Game-based Decision Module (D-GBDM) 

in firewall instances as shown in Figure 1. D-GBDM generates attack and optimal threshold values k1 and k2 respectively to 

limit the rate of incoming traffic. These threshold values determine traffic that is classified as legitimate (λl), attack (λm) and 

suspicious (λs). If the flow is below the optimal threshold value (k2) then it will be directed to the target virtual instance as a 

legitimate flow (λm). Conversely, attack and suspicious traffic flows are redirected to Honeypot (HP) for further analysis. 
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Honeypot instances (HP1, HP2) inquire about suspicious traffic by collecting logs, including source and destination 

addresses, timestamps, and other identifiable attributes. 

Moreover, it preserves the malicious activity information repository in Honeypot. Honeypot Manager decides which 

traffic will be dropped and which traffic will be redirected to destination instances i.e., target VM, based upon matching the 

traffic pattern with the repository. Usually, traffic directed to honeypots is malicious in nature [25, 26, 29]. Honeypot is 

designed so that attackers can conveniently exploit the vulnerabilities of this device by misunderstanding it as their target 

VM and later fall into it as a trap. As a result, malicious traffic information can easily be captured by Honeypot. 

The functionality of the proposed Advanced EDoS Eye is divided into the following four processes: P1- P4. 

P1: Firewall Instances (VFs) deal with all the incoming traffic from LB and filter portion of (TCP + UDP) traffic based 

on D-GBDM generated thresholds (k1 and k2). D-GBDM classifies the incoming traffic such as legitimate, attack and 

suspicious. 

P2: If total incoming traffic (λ) < optimal threshold (k2), then the traffic is considered legitimate (λm) and is directed to 

the target instance, i.e., VM. If λ > k2 and λ > attack threshold (k1), then it is treated as attack traffic (λm). In this case, this 

traffic is sent to Honeypot (HP1) for further analysis. The Honeypot repository records the attack information source for 

future analysis or investigation. In the proposed model, virtual Honeypot instances [30] are considered to enable the auto-

scale feature to maintain the same instances before getting corrupted. Once information is collected, the HP manager drops 

the malicious traffic. 

P3: If incoming traffic (λ) > k2 and < k1, then D-GBDM classifies it as suspicious traffic (λs). It will redirect λs towards 

Honeypot (HP2) to observe if any matching can be found with the existing attack repository. 

P4: If the suspicious traffic λs matches Attack Nature’s (AN) characteristics, it will be eliminated. Otherwise, it will 

pass to the target instance (VM) as legitimate traffic (λl). 

 

3. Dynamic Game Modelling 
We now present the analytical framework of the Dynamic Game-based Decision Module (D-GBDM) as a key part of 

the proposed Advanced EDoS Eye. Firstly, D-GBDM demonstrated with formal analysis under different game scenarios, 

i.e., single shot static game and multistage dynamic game. In the later part of the section, the response time of the 

Advanced EDoS Eye has been analyzed for performance evaluation.  

 

3.1. Dynamic Game-based Decision Module (D-GBDM) Analysis 

In the proposed model, we assume the attacker is always rational, and the defender is either irrational or rational. To 

demonstrate the effectiveness of the D-GBDM in contrast to the GBDM, we stage a single-shot static game in Scenario 1. 

The focused scenario is a multi-stage dynamic game presented in Scenario 2. In a multistage dynamic game, both players 

exhibit maximum efficiency in dominating each other. However, firstly, we introduce the players as follows. 

Rational Attacker: The rational attacker is the one who adopts her strategy to evade intrusion detection smartly so that 

it can inject malicious EDoS traffic to exploit the cloud utility model. The attacker has at least some knowledge of the 

defensive mechanism. Rational attacker always intends to maximize their payoff or incentives. 

Irrational Defender: The irrational defender is indifferent toward the attacker’s strategy. For example, one employs her 

maximum resources while defending an intermediate attacker or invests low resources while defending against full strength 

attacker without knowing the attacker’s strategy.  

Rational Defender: A rational defender can smartly adjust her defensive strategies based on the intensity of attack 

strength. The defender is dynamic; she can change her defense policies at any game stage. The defender has at least some 

knowledge of the attacker’s tactic. The objective of the rational defender is to achieve the highest possible payoff 

throughout the game. 

The proposed model considers a simple M/M/S queue best suited to the cloud. All the incoming traffic in the cloud 

follows Poisson distribution in general [31]. 

Pr [x = K] = 
𝜆𝐾𝑒−𝜆

𝐾!
, K = 0, 1, 2, …                    (1) 

Equation 1 expresses the probability of K arrival for a specified interval. λ is the aggregate incoming traffic arrival rate. 

 

S represents the total number of instances in the cloud. Since traffic of each instance will be distributed evenly in the 

load balancer, each instance receives λi = 
𝜆

𝑆
  traffic of i-th instance.  

The mean cloud utility per instance, U = 
∑

 𝜆𝑖
𝑆µ

𝑆
𝑖

𝑆
= 

𝜆

𝑆µ
                                                (2) 

where µ is the average service rate of the cloud. Hence, utility rate or busy rate can be derived as  

𝜌 =  
𝜆

µ
                                      (3) 

For the stability of the system, keeping ρ < 1 must be ensured. During an EDoS attack, the total incoming flow rate will 

become λ = λl + λm., where λl  is legitimate traffic and λm is malicious traffic.   

Hence, in the attack phase, the average computing resources utility on S active instances is defined as follows. 

U = 
𝜆𝑙+ λm

𝑆µ
 = Ul + Um                            (4) 

The utility resources in the cloud solely exploited by the attacker will be.  

Um =  
𝜆𝑚

𝑆µ
                          (5) 
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According to Wang, et al. [32]. EDoS falls into the amplification attack class category where the attacker invests fewer 

resources to maximize the damages of the target victim’s resources. Since, in EDoS, the attacker’s main goal is to impose a 

financial burden on the victim. This can be quantified as follows. 

Economic Amplification factor (EAF) = 
𝐶𝑜𝑠𝑡𝑡𝑎𝑟𝑔𝑒𝑡 𝜆𝑡𝑎𝑟𝑔𝑒𝑡 

𝐶𝑜𝑠𝑡𝑎𝑡𝑡𝑎𝑐𝑘 𝜆𝑎𝑡𝑡𝑎𝑐𝑘
                          (6) 

 Where Bandwidth Amplification Factor (BAF) = 
𝜆𝑡𝑎𝑟𝑔𝑒𝑡 

𝜆𝑎𝑡𝑡𝑎𝑐𝑘
.                               

In an amplification attack, attacker-generated payloads are usually lesser than those received at the victim’s end. For 

instance, an attacker sends simple DNS look-up messages to a public DNS server using the victim's spoofed IP address, 

resulting in an overflow of DNS response traffic at the server end [32]. In this scenario, the attacker's payload packets are 

much lower compared to the victim’s received payload packets.  

So, here, λtarget = λm, which results in EAF = 
𝐶𝑜𝑠𝑡𝑡𝑎𝑟𝑔𝑒𝑡 𝜆𝑚 

𝐶𝑜𝑠𝑡𝑎𝑡𝑡𝑎𝑐𝑘 𝜆𝑎𝑡𝑡𝑎𝑐𝑘
                      (7) 

For a rational attacker   
𝐶𝑜𝑠𝑡𝑡𝑎𝑟𝑔𝑒𝑡

𝐶𝑜𝑠𝑡𝑎𝑡𝑡𝑐𝑘
> 1  and 

𝜆𝑚 

𝜆𝑎𝑡𝑡𝑎𝑐𝑘
> 1,  Hence, EAF > 1 

Attacker’s Dilemma: The attacker deploys v number of nodes/instances to execute an EDoS attack. If v is high, the 

attacker conveniently maintains a lower attack flow rate (λm), leading to higher payoff or maximizing the damage to its 

victim. However, deploying multiple nodes/instances is expensive. Conversely, if the attacker plans to deploy fewer 

nodes/instances with a higher attack flow rate, the firewall will easily block it due to the rate limit. This will reduce 

attacker payoff. 

Defender’s Dilemma: The defender needs to fix a certain threshold value to rate limit the traffic. If she sets a low 

threshold value (k) in the firewall, most traffic, including legitimate traffic, will be barred. This will result in more false 

positives. Conversely, setting a high threshold value (k) permits illegitimate traffic to pass into the firewall, resulting in 

more false negatives. Therefore, choosing an optimal threshold value (kopt) is essential to minimize the attacker payoff. 

Adjusting threshold (k) at different points of the game based on various traffic rates is even more challenging for the 

defender.  

Consider the attacker investing v nodes to send EDoS traffic in the proposed game model. At the same time, legitimate 

users send u number of traffic requests. Hence, Equations 4 and 5 can be rewritten as follows. 

     U = 
𝑢 𝜆𝑙 + 𝑣 𝜆𝑚

𝑆µ
                                                 

 (8) 

     Um = 
𝑣 𝜆𝑚

𝑆µ
                                               (9) 

 

3.2. Scenario 1- Single shot static game 

Scenario 1 is a static zero-sum game where players involved in the game, once they decide on a strategy, cannot alter it 

till the end of the game.   

The attacker's objective is to exploit the cloud utility resources, i.e., an increase of Um and the increase of the Economic 

Amplification Factor (EAF). The attacker’s primary goal is to maximize the payoff while using the least number of nodes v. 

Hence, the attacker’s cumulative payoff is quantified as follows. 

 CA = Wm Um (nd) + WEAF EAF(nd) – Wv v (nd)                            (10) 

Since it is a zero-sum game, the defender’s cumulative payoff is exactly opposite the attacker’s cumulative payoff.  

 CD = -Wm Um (nd) - WEAF EAF (nd) + Wv v (nd)                  (11)     

Here, Wm, WEAF, and Wv  are the weight coefficients of the players involved in the game. The suffix nd expresses no defense 

mode. 

Considering the defense mode in the existing EDoS Eye [23]. The attacker's payoff is defined as follows.  

 CA
d = Wm

d
 Um

d
  + WEAF

d
 EAFd

  – Wv
d

 vd  – WH
d Hd                      (12) 

The defender payoff is defined as follows. 

 CD
d = –Wm

d
 Um

d
  – WEAF

d
 EAFd

  + Wv
d
 vd  + WH

d Hd                (13) 

Wm
d, WEAF

d, Wv
d, and WH

d are the weight co-efficient of players involved from both parties in defense mode. Hd is the 

portion of traffic which goes to the honeypot.                

The attacker aims to find the optimal value of λm and v. In contrast, the defender's goal is to find the optimal value of the 

threshold (k1, k2) to maximize the expected payoff. The Nash Equilibrium represents the pair of strategies that give the 

maximum set of outcomes for both players unless one of the players deviates from her payoff matrix. Hence, in the EDoS 

Eye Chowdhury, et al. [23] i.e., GBDM, Nash Equilibrium is expressed as follows. 

.  CA (v*, λm*, k1*, k2*) > CA (v, λm, k1*, k2*)      ∀ v, 𝜆𝑚                                (14)        

 CD (v*, λm*, k1*, k2*) > CD (v*, λm*, k1, k2)      ∀ k1, 𝑘2                               (15) 

 

3.3. Scenario 2 - Multistage Dynamic Game 

In real-life scenarios, the actions of rational attackers and rational defenders are not static. The set of actions changes 

with time. Thus, dynamic game modelling better suits the reality of battling against the attacker. We assume both the 

players are either rational or irrational. This means at a specific time; an attacker can set a rational action plan against an 

irrational action of a defender or vice versa. Furthermore, there might be a case where both the players’ actions or strategies 

are simultaneously rational or irrational. Dynamic strategy deals with the change of movement of players from one stage to 

another in a game. This modelling allows us to dynamically add, enable, disable, and detach a security measure. It also 
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permits reconfiguring defensive mechanisms by replacing older one's [33] according to Cao, et al. [33] Some inherent 

properties of the game are as follows. 

1. Intentional Attack Property: In general, attackers are not random. Instead, it is driven by the attacker's intents and 

objectives. 

2. Strategy-Interdependency Property: The effectiveness of the attack depends on how secured or protected the system is. 

The system's quality can only be assessed when the system is under attack. 

3. Uncertainty Property: Both the attacker and defender have incomplete information about each other. 

Generally, the dynamic game model is formed based on two crucial factors, i.e., state and time. The game is a battle 

between attacker and defender consisting of an interleaved sequence of states with corresponding actions, as shown in 

Figure 2. 

 

s1s1 s2s2 s3s3 s4s4 snsn

t2t1  t3 t n-1

Action : Attack

Action: Defense

No 

action

Action : Attack

Action: Defense
 

Figure 2. 

States, intervals, and actions in a dynamic game. 

 

Let state consists of a series of n number of finite smaller sub-states such as State = {s1, s2….sn}. The interval between 

two adjacent states is ti, where ti = {t1, t2…...tn-1}. Only one action from each player can occur between adjacent states. 

Actions, each from attacker and defender, can also be allowed in the same interval between adjacent states. Moreover, an 

actionless interval between two states is permissible since it is not considered any legitimate traffic flow as an action. In 

this game, both the players have the following actions. 

The attacker dynamically adjusts the number of nodes (v) and traffic rate (λm). When increasing the number of nodes, 

a rational attacker usually decreases the traffic rate or vice versa. 

Defender can dynamically adjust the minimum rate limiting threshold parameter k2, i.e., increase or decrease k2 during 

a game. In addition, the rational defender also applies her prediction, which is a knowledge-based probabilistic action to 

use appropriate steps. This prediction is a subjective parameter. In this simplified model, we quantify this parameter as Ϩ 

with the name “Prediction”.  Ϩ ranges from 0 to 1, where a higher value indicates more predictive to recognize the attack. 

Here, the defender also means the defense system or part of the defense system, such as the honeypot. Prediction Ϩ is a 

parameter that follows the rule “observe then act”.  

In the proposed dynamic game model, the attacker’s possible action set is A = {A1, A2, A3, A4} where,    

A1 = Increase node (v) and increase traffic rate (λm)  

A2 = Increase node (v) and decrease traffic rate (λm) 

A3 = Decrease node (v) and increase traffic rate (λm)  

A4 = Decrease node (v) and decrease traffic rate (λm)   

Defender’s possible set of action include D = {D1, D2, D3, D4} where,  

D1 = Increase threshold (k2) without Prediction (Ϩ) 

D2 = Decrease threshold (k2) without Prediction (Ϩ) 

D3 = Increase threshold (k2) with Prediction (Ϩ) 

D4 = Decrease threshold (k2) with Prediction (Ϩ) 

Thus, the dynamic game matrix will be as follows:  

 
Table 1. 

Different Strategy pair matrix of attacker and defender. 

Attacker (A) / Defender (D) D1                    D2                         D3                       D4 

A1 

A2 

A3 

A4 

A1D1               A1D2                    A1D3                  A1D4 

A2D1               A2D2                    A2D3                  A2D4 

A3D1               A3D2                    A3D3                  A3D4 

A4D1               A4D2                    A4D3                  A4D4 

 

Table 1 demonstrates that 16 possible strategy pairs exist in this model. In each strategy pair, attack and defense 

strategy co-exist. Recall from the proposed analytical game model that the attacker’s strategy parameter in a strategic action 

is Ai (v, λm), like the static model. Defender’s strategic action is Di (k2, Ϩ). The new parameter Ϩ in a defensive strategy can 

only be applied to rational defenders. For irrational defenders, Ϩ=0. The static game model presented earlier, Ϩ, is absent 

because of the irrational defender. Unlike the static model of GBDM, the D-GBDM works in the following scenario, as 

presented in Figure 3.  

 



 
 

               International Journal of Innovative Research and Scientific Studies, 9(2) 2026, pages: 35-52
 

41 

s1s1 s2s2 s3s3 s4s4 snsn

t2t1  t3 t n-1

A1

D1

No 

action

A2

D4

s5s5

 t4

 
Figure 3. 
A simple scenario of a dynamic game. 

 

At interval t1, the attacker launches an attack with the A1 strategy, which implies the attack performs with an 

increasing number of nodes as well as an increasing rate of traffic. The defender takes prompt action with the D1 strategy 

by seeing the attack traffic in the same interval. D1 strategy implies increasing the threshold value to block the traffic but 

not analyzing the traffic nature, whether it is malicious or legitimate. So, at the t1 interval, the strategy pair of attacker and 

defender is A1D1. An intelligent or rational attacker can observe the defensive measure after a certain interval. She decides 

to move her strategy from A1 to A2, which suggests decreasing the traffic rate while nodes remain the same. As the 

defender sets a high threshold value of k2, the attacker intends to bypass the malicious traffic by lowering the traffic rate. 

The effect can be seen at interval t3 between adjacent states s3 and s4. If the defender acts rationally, she will follow the 

observe-then-act strategy. In the next interval, i.e., the t4 defender switches to the D4 strategy. D4 implies a decrease in the 

threshold value k2 with prediction Ϩ. A good prediction Ϩ can differentiate malicious traffic from legitimate traffic by 

matching the characteristic fields of attack traffic such as source and destination address, traffic rate, traffic pattern, 

timestamp, etc. In this way, a rational defender can significantly reduce the false rate by taking the appropriate strategy as a 

reaction to the attacker's strategy. 

The players' payoff in any stage si of this dynamic game is like their static game payoff presented in Equations 12 and 13 

with slight modification. With the new parameter Ϩ, the payoff for the dynamic game at any stage can be represented.  

 CA
d (si) = Wm

d
 Um

d
  + WEAF

d
 EAFd

  – Wv
d
 vd  – WH

d Hd  - WϨ
d
 Ϩd                 (16) 

 CD
d (si) = –Wm

d
 Um

d
  – WEAF

d
 EAFd

  + Wv
d

 vd  + WH
d Hd + WϨ

d
 Ϩd    (17) 

Here, WϨ is the weight of prediction Ϩ.  

The sub-game Nash Equilibrium exists in each stage of the game, representing the proposed D-GBDM.  These 

equations are the ultimate game-based strategic outcome of the proposed Advanced EDoS Eye.   

 CA si (v*, λm*, k2*, Ϩ*)   > CA si  (v, λm, k2*, Ϩ*)      ∀ v, 𝜆𝑚                          (18) 

 CD si (v*, λm*, k2*, Ϩ*) > CD  si  (v*, λm*, k2, Ϩ)      ∀ k2, Ϩ                    (19)  

 

3.4. Response Time Analysis for Performance Measurement  

End-to-end response time considered a crucial factor in measuring Quality of Service (QoS) should conform with 

Service Level Agreement (SLA). We consider the M/M/S queue in a finite space. Client and server requests follow the 

First Come First Serve rule (FCFS). In Al-Haidari, et al. [17] and Chandy and Sauer [34] the authors computed the average 

response time in a virtual cloud firewall using the M/M/s queuing model. 

In the proposed model, after the even distribution in Load Balancer (LB), the individual arrival rate of each instance i, 

λi = 
𝜆𝑛𝑎

𝑆
, where λna is the total arrival rate in the non-attack case. λna= u λl. 

Assume µ is the identical service rate of each instance i. So, the average delay for each instance in the firewall is τ =  
1

µ− λi
  

The total number of service requests in S instances are N = ∑ 𝜆𝑖
𝑆
𝑖=1  𝜏 = λna 𝜏 

Little’s theorem yields the long-term response time, Rest = 
𝑁

𝜆𝑛𝑎
 = 

1

µ− 𝜆𝑖
 

So, the mean response time of a group of S instances in VF is as follows. 

 𝑅𝑒𝑠𝑡 𝑣𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅  =  

𝑆

𝑆µ− 𝜆𝑛𝑎
  (20) 

During an EDoS attack, total arrival traffic λ comprised of both legitimate traffic λl and attack traffic λm such as λ = λl + 

λm. If the attacker uses v nodes and legitimate users send u number of requests, then total aggregate traffic in an attack case 

will be λtotal = uλl + vλm. For simplicity, we assume, λtotal = ψλ, where ψ is the attack strength and ψ > 1. Thus, the mean 

response time in VF during attack is as follows. 

 𝑅𝑒𝑠𝑡𝑎 𝑣𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 

S

𝑆µ− 𝜓𝜆
 (21) 

 

3.5. Response Time with the Defense Models  

In Chandy and Sauer [34] the authors evaluated the response time of EDoS-Shield - a well-known EDoS mitigation 

model, using the M/M/1 queuing model. However, a major flaw has been observed in their computational process. Their 

analytical model did not consider the response time taken in verification nodes (V-nodes), which is a considerable time-

intensive step. We incorporate this additional step of EDoS shield for the computation of overall response time using a 

similar approach and data used in Chandy and Sauer [34]. The objective is to make a fair comparison with the proposed 

model. The decomposition method Chandy and Sauer [34] is used in calculating the total response time where a system is 

segmented into subsystems. 
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The total end-to-end response time taken in EDoS-Shield architecture, including the time taken in V-nodes, is as 

follows.  

RTEDoS-Shield = (𝑅𝑒𝑠𝑡𝑎 𝑣𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅   + 𝑅𝑒𝑠𝑡𝑎 𝑉−𝑛𝑜𝑑𝑒𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  + Link_delay * Pa + Cloud_end_delay * Pa   (22) 

where,  𝑅𝑒𝑠𝑡𝑎 𝑣𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 

S1

𝑆1µ− 𝜓𝜆
  is the mean response time taken in virtual firewall instances. S1 is the number of virtual 

firewall instances.  

 𝑅𝑒𝑠𝑡𝑎 𝑉−𝑛𝑜𝑑𝑒𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  

S2

𝑆2µ− 𝜓𝜆
 is the mean response time taken in verifier nodes (V-nodes). S2 is the number of virtual 

instances used in V-nodes. Link delay is due to a congested link between the virtual firewall and the cloud end. Link delay 

is computed as below.  

Link_delay = 
1− 

𝜆𝑎
µ𝑙𝑖𝑛𝑘

µ𝑙𝑖𝑛𝑘− 𝜆𝑎
 where λa is the mean incoming rate after passing the virtual firewall and µlink is the link 

capacity between VF and Cloud end.  

Cloud_end_delay = 
S

𝑆µ2− 𝜆𝑎
 ,  µ2 is service rate in cloud end. Pa is the probability of reaching the traffic in the cloud 

end. Hence, the Equation 22 can be rewritten as follows.  RTEDoS-Shield = (
𝑆1

𝑆1µ− 𝜓𝜆
  + 

S2

𝑆2µ− 𝜓𝜆
)  + 

1− 
𝜆𝑎

µ𝑙𝑖𝑛𝑘

µ𝑙𝑖𝑛𝑘− 𝜆𝑎
 * Pa + 

S

𝑆µ2− 𝜆𝑎
 * Pa                             (23) 

In the proposed model, the total end-to-end response time can be computed as 

RTEDoS-Eye = 𝑅𝑒𝑠𝑡𝑎 𝑣𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅    + 𝑅𝑒𝑠𝑡𝑎 𝐻𝑜𝑛𝑒𝑦𝑝𝑜𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    * Pr+ Link_delay * Pa + Cloud_end_delay * Pa              (24) 

where, 𝑅𝑒𝑠𝑡𝑎 𝐻𝑜𝑛𝑒𝑦𝑝𝑜𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    =  

S3

𝑆3µ3− 𝜓𝜆
 , S3 represents the number of virtual instances of honeypot and µ3 is the service 

rate at honeypot. Pr is the probability of traffic redirecting towards the honeypot from VF. Thus, Equation 25 represents the 

proposed defensive model's overall response time or latency. 

RT Advanced EDoS-Eye = 
S1

𝑆1µ− 𝜓𝜆
  + 

S3

𝑆3µ3− 𝜓𝜆
 * Pr + 

1− 
𝜆𝑎

µ𝑙𝑖𝑛𝑘

µ𝑙𝑖𝑛𝑘− 𝜆𝑎
 * Pa + 

S

𝑆µ2− 𝜆𝑎
 * Pa                         (25) 

 

4. Model Analysis with Simulation Outcome 
4.1. Payoff and Threshold Evaluation in Game Model 

The proposed model is applied in a testbed where computation and simulation are conducted using the Wolfram 

Mathematica 11.0 version. In defense mode, we first present Scenario 1 i.e., EDOS Eye of the previous section where the 

game is static. Equation 12 represents the total payoff of the attacker in defense mode for EDoS Eye. Equation 12 

comprises the probabilities of allowing, dropping and redirecting traffic Chowdhury, et al. [23] which can be rewritten as 

follows. 

CA
d = Wm

d
   

v λm

𝑆µ
  Pa (k1, k2, v, 𝜆𝑚 )  + WEAF

d 
 

𝐶𝑜𝑠𝑡𝑡𝑎𝑟𝑔𝑒𝑡 𝜆𝑚 

𝐶𝑜𝑠𝑡𝑎𝑡𝑡𝑐𝑘 𝜆𝑎𝑡𝑡𝑎𝑐𝑘
  Pa (k1, k2, v, 𝜆𝑚 )  – Wv

d 
 vd  – WH

d  𝑣 𝜆𝑚 Pr (k1, k2, v, 𝜆𝑚 )  

In EDoS Eye, the game is a single shot static game, and hence the traffic (λm) is constant, which implies the attacker 

only needs to manage several attacking nodes v. Nodes number selection and their deployment should be strategic so that 

the attacker can obtain maximum payoff through it. On the other hand, the defender only needs to adjust the threshold 

values k1 and k2 as a defense filter in the firewall. For simplification, let k1 = 1.25 k2. It implies the defender only requires 

adjusting the value of k2 in the model. We also set the weight of the honeypot, WH
d=2. The payoff is computed based on 

the probability of traffic distribution according to the EDoS Eye model [23]. In this experiment, we set the limit of k2 = 60 

Kbps and k1 = k2*1.25 = 75 Kbps. Traffic below or equal to k2 will pass the firewall and reach the target server hosted in 

the cloud. If traffic lies between k1 and k2, it will be redirected to the honeypot for deeper inspection. If λm > k2, then it will 

block this traffic. Noted that the defender can tune the threshold value k2 dynamically. However, the defender can only set 

the threshold value once per game. Later, the defender will adjust threshold settings dynamically in Scenario 2, a 

simulation where both the players are rational in a multistage dynamic game.   

In the experiment in Figure 4 if the attacker exposes all nodes (v) belonging to her, i.e., 80, with a maximum allowable 

traffic rate of 60 for this case, the receivable payoff is 6200. This is the maximum payoff. However, exposing all the nodes 

in an EDoS attack using a single move is not a wise choice. There is an elevated risk of losing all the investing resources of 

the attacker if the defender identifies and blocks it. Even a minor deviation from this stage can cause greater loss. For 

example, if the traffic rate is 61, the payoff will sharply fall into -1138 with these attack nodes, as the data indicates in 

Figure 4. The attacker's smartest move should rely on Nash Equilibrium, a pair of strategies presented in Equations 14 and 

15. In this scenario, it is observed that Nash Equilibrium exists. In a zero-sum game, one way to evaluate Nash Equilibrium 

is to determine saddle points from a series of coordinate values. 
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Figure 4.  

Attacker payoffs for different threshold values (k2). 

 

An essential condition for saddle point is the presence of payoff matrix elements. Among these elements, at least one 

must simultaneously contain the minimum of its row and the maximum of its column. A game might have one or more 

saddle points, but each must possess the same value. It is observed in Figure 5 indicated in red mark. The saddle point 

detects the coordinate (5, 61, -71.125), which signifies the optimal strategy of the attacker. With firewall setting threshold 

value (k2) 61, the attacker’s best strategy is to invest in 5 nodes if she executes an attack with equal or slightly below this 

traffic rate. This gives the attacker a payoff of -71.125. In other words, if the defender sets the threshold value 61, she will 

get the payoff exactly opposite to the attacker, i.e., 71.125. At this stage, the attacker’s deviation from this strategy will 

always give her a lower payoff, assuming the defender’s move remains unchanged.    

The proposed model illustrates a dynamic move of the attacker from A1 to A2 (as shown in Section 3), which means 

the attacker first starts the attack with an increasing number of nodes v as well as a higher rate of traffic λm. Defenders then 

choose strategy D1, i.e., increase the threshold value k2 to block traffic. After D1, the attacker switches her move to A2, 

indicating a lower traffic rate while remaining the same attacking nodes. However, the defender sticks to the same strategy 

as a static game. Figure 6 depicts the attacker's payoff in this situation. 

 

 
Figure 5. 

The existence of saddle point (5, 61, -71.125) as Nash Equilibrium indicates in red point among attacker’s payoff (CA) distribution.  

 

Figure 6 shows that red marks indicate the dropped traffic the defender blocks by setting a higher threshold value. The 

attacker’s wise move to change the traffic rate from high to low evades this threshold value and successfully bypasses the 

firewall as the defender sticks to the same strategy. Green marks indicate allowable traffic, which maximizes the payoff of 

the attacker.  
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Figure 6. 
Attacker payoff in a dynamic game while the defender remains static. 

 

In the second experiment of this dynamic game, we select the A2D4 stage, as shown in Table 2 of Section 3, where the 

defender rationally responds against the attacker’s dynamic movement. The attacker changes her strategy to inflict low-rate 

stealthy traffic to evade a defender. Defender wisely follows ‘observe then act’ rules and applies the D4 strategy with 

knowledge-based prediction Ϩ. This move implies that the defender adjusts the threshold k2 dynamically. Figure 7 

postulates the situation.  

 

 
Figure 7. 
Defender’s wise move in the A2D4 stage of the dynamic game. 

 

Three saddle points are identified in various sub-states of this stage (A2D4) dynamic game. These saddle points are 

shown in Figure 8 with red point marks. Locations of these three points are (70, 55, 1335.94), (50, 60, -3868.75) and (50, 

65, -7259.375). Multiple saddle points attribute the strategic changing pattern in a game stage by both the players. Each 

saddle point indicates the Nash Equilibrium of the corresponding strategic move in the subgame. When the attacker moves 

from A1 to A2 strategy, Nash Equilibrium at (70, 55, 1335.94) yields her maximum payoff of 1335.94 with 70 nodes and a 

traffic rate of 55. As the defender moves the D4 strategy, the payoff of the attacker starts declining and reaches another 

equilibrium (50, 60, -3868.75). It means that if the defender, in part of the D4 strategy, sets the threshold k2 between 55 and 

60, then the attacker would obtain a maximum payoff of -3868.75 with 50 nodes and a traffic rate of 60. Imposing more 

nodes and traffic rates will worsen her payoff as we see the situation in the third equilibrium at (50, 65, -7259375). 
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Figure 8. 

Various saddle points (red mark) in the A2D4 stage game. The points are (70, 55, 1335.94), (50, 60, -3868.75) and (50, 65, -7259.375). 

 

If the attacker decides to follow a traffic rate of 65 to maximize her payoff, setting a threshold value k2 between 60 and 

65 by the defender would give the attacker a maximum payoff of -7259.375 with minimum nodes 50. Anything beyond that 

would make her payoff worse, as seen in the top left corner of Figure 8. The Nash Equilibrium at the end of the A2D4 stage 

game is (50, 65, -7259.375).  

Figure 9 compares various payoff matrices of attackers for different scenarios. We plot this using the traffic rate of 45-

70 Kbps while attack nodes, v = 70.  As a dynamic response, we select the A2D4 stage of the proposed dynamic game. A 

dynamically adjustable threshold value with a good prediction Ϩ can significantly lower the payoff of the attacker. For this, 

the defender also needs to be rational. Conversely, the static response from EDoS Eye is not as worthy as the dynamic 

response from Advanced EDoS Eye to efficiently mitigate EDoS attacks in cloud computing. 

 

 

 
Figure 9.  

Attacker payoff comparison in different game scenarios. 

 

The results imply that, with the proper dynamic defensive response, it is possible to drastically reduce the payoff of the 

attacker, i.e., attacker incentives.  

 

4.2. Response Time Evaluation  

Figure 10 illustrates the mean response time taken during an EDoS attack without any mitigation approach. The 

firewall's mean arrival rate is blended with legitimate and attack traffic. There is no way to differentiate the attack traffic 

before arriving in the firewall. The response time increases exponentially when the aggregate traffic (λ) reaches near the 

rate of service rate (µ). 

When an EDoS attack is launched, it is necessary to maintain the standard time taken by each VF instance according to 

Equation 20. The creation of duplicate VF instances is proportional to the increase in attack strength (ψ), as shown in 

Figure 11. 
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Figure 10. 

The mean response time (in seconds) during attack (Without mitigation). 

 

 
Figure 11. 

The relation between attack strength and the number of duplicate VF instances with various arrival rates λ. 
 

Legitimate users with guaranteed QoS should be the highest priority even before mitigation occurs. Uninterrupted 

services to legitimate clients must be ensured when the system is attacked. The proposed model allocates certain provisions 

of multiple virtual firewall instances to receive and filter large amounts of traffic. In Figure 11, we observe the different 

requirements of virtual firewall instances with various traffic arrival rates ranging from 60-90 req/s and a fixed service rate 

of 100 req/s. The requirement of a duplicate number of VF instances is low when we allow a high traffic rate. However, it 

gives lower cost to the Cloud Service Provider (CSP) with service degradation due to increasing response time. On the 

other hand, if we set to allow a low traffic rate, such as 60 req/s, it can maintain a Service Level Agreement (SLA) with 

better response time but would take more cost due to more VF instances. If CSP makes an SLA favorable towards Cloud 

Consumers (CC), then auto-scaling costs would be reduced substantially from the consumer’s perspective. Thus, the impact 

of EDoS attacks can be minimized in this way. However, the cloud providers magnify the energy cost [35, 36] because 

fraudulent resource consumptions cannot be compensated. So, there needs to be a trade-off between CSP and CC in making 

an effective SLA.  

For evaluation and comparison with EDoS-Shield, we only consider response time taken in a virtual firewall (VF) and 

mitigation process that involves the defensive architecture. The measurement of response time due to delays in both the 

congestion link and the cloud end is very complicated. The reason is that cloud computing architecture comprises 

heterogeneous devices, unlike clustering systems. Moreover, the proposed mitigation architecture has a negligible impact 

on the congestion link and the cloud end. Hence, the first two steps of both Equations 23 and 25 are used to evaluate the 

response time of EDoS-Shield and the proposed model, respectively. The remaining part of both Equations 23 and 25 are 

considered the same. Figure 12 shows the mean response time of the proposed Advanced EDoS Eye. 
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Figure 12. 

The response time taken by the proposed Advanced EDoS Eye. 

 

To measure this, we set the number of initial VF instances = 5, service rate =100 req/s, and rate of incoming traffic 10-

400 req/s. The probability of redirecting traffic to a honeypot is 0.5.  

 

 
Figure 13. 

Comparison of response time with EDoS-Shield and attack without mitigation. 

 

We use the same data to compare EDoS-Shield with the proposed model shown in Figure 13. It indicates that EDoS-

Shield takes a slightly longer response time than the proposed model. Mainly, it consumes extra time when verifying each 

new packet in the verifier node while updating the packet information list in the database.  

Conversely, depending on the Dynamic Game-based Decision Module (D-GBDM) in VF, we redirect some packets 

toward the honeypot. There is no scope for a time-intensive verification test in the proposed model. This is the root cause 

that the proposed model outperforms EDoS-Shield by providing faster response time while ensuring QoS. 

 
Table 2. 

Comparison of proposed Advanced EDoS Eye with the EDoS-Shield and the EDoS Eye. 

Models Response Time (in sec) Attacker Strategy 

Analysis 

Threshold 

Setting 

QoS during 

Attack 

EDoS Shield 0.09 for 400 req/s No Static or 

Predefined 

No 

EDoS Eye  Not Evaluated Yes Static No 

Advanced EDoS Eye (Proposed) 0.06 for 400 req/s Yes Dynamic Yes 

 

4.3. Experimental Validation of the Advanced EDoS Eye 

We conducted a simple experiment using Riverbed Modeler Academic Edition 17.5 to validate the proposed model. 

Discrete event simulation is used to measure the performance of the proposed model. Table 3 shows the configuration of 

the testbed. 
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Table 3. 

Experimental Setup. 

Setup Elements Number 

Number of Legitimate Clients 50 

Number of Attack Nodes 20 

Number of Routers 3 (gateway for attack traffic, gateway for legitimate traffic and edge router) 

Number of Switches 3 (1 attacker switch, 1 legitimate switch and 1 server farm switch) 

Load Balancer 1 

Firewall 1 

Number of VM Servers 3 (Server Type Sun Ultra 10 333MHz: 1 CPU, 1 Core(s) Per CPU, 333MHz, Solaris, 

System) 

Communication Links 100 Base T ethernet, 100 Gbps ethernet, 10 Gbps ethernet, PPP DS1 

Honeypot 1 (Server Type Sun Ultra 10 333MHz: 1 CPU, 1 Core(s) Per CPU, 333MHz, Solaris, 

System) 

Honeypot Repository 1 (Server Type Sun Ultra 10 333MHz: 1 CPU, 1 Core(s) Per CPU, 333MHz, Solaris, 

System) 

IP Cloud Interface 1 

Traffic Type TCP+UDP 

Distribution type Poisson + Exponential (Attacker) 

Poisson (Legitimate users) 

Experiment Duration 25 minutes 

 

First, we design the scenario in no defense mode to evaluate various performances as shown in Figure 14. 

 

 
Figure 14. 

EDoS attack launches in a typical cloud environment. 

 

In the experiment's first phase, we chose a simple cloud environment with only 3 VMs residing on top of the hypervisor 

according to the proposed design shown in Section 2. The red zone indicates that the attacker compromises a LAN 

consisting of 20 nodes with EDoS attack scripts. The scripts contain high HTTP, high FTP and a high load of database 

requests. Besides EDoS attackers, we also design profiles for legitimate users, including e-commerce users, multimedia 

users, researchers, salesmen, etc. The legitimate users’ profiles indicate the green zone in Figure 14. The EDoS attacker 

targets a specific VM to exploit the resources, termed “target VM”, and indicated in the red mark area. The experiment has 

been conducted for 25 minutes.  

In the second phase, we design the proposed Advanced EDoS Eye model in the riverbed modeler. The scenario of the 

experimental setup is shown in Figure 15. 
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Figure 15. 

Proposed Advanced EDoS Eye Model in Riverbed Modeler. 

 

Honeypot and honeypot repository indicated both in yellow marks are the new inclusion in the scenario. In addition, 

D-GBDM is also incorporated into the virtual firewall, which analyses packets and generates decisions about inbound 

packets. The duration of the experiment was 25 minutes. The selected discrete event simulation outcomes imply positive 

and effective results regarding EDoS effect mitigation. Figure 16 shows a considerable reduction in CPU resource usage 

with the implementation of Advanced EDoS Eye. 

 

 
Figure16. 

CPU resource usage comparison (Advanced EDoS Eye vs. No defense). 
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Figure 17. 

Avg. end-to-end response time comparison (Advanced EDoS Eye vs. No defense). 

 

The experiment also evaluates performance metrics such as end-to-end response time, throughput and overall HTTP 

response time, shown in Figures 17, 18, and 19, respectively. In all cases, Advanced EDoS Eye shows a significant 

performance improvement of the system. 

 

 
Figure 18. 

Throughput comparison (Advanced EDoS Eye vs. no defense). 

 

 
Figure 19.  

Avg. HTTP page response time comparison (Advanced EDoS Eye vs no defense). 
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5. Conclusion  
The overall experimental outcomes validate the efficiency of the proposed Advanced EDoS Eye model. The 

performance of the proposed Advanced EDoS eye makes a distinction which not only eliminates EDoS traffic but also 

improves the performance of other parameters which was indirectly affected by EDoS attack. Moreover, dynamic games 

have proven more effective than static games in reducing the payoff of EDoS attackers. Dynamic threshold generation in a 

multistage dynamic game model can successfully restrict EDoS traffic and save the target cloud consumer as a safeguard. 

In the simulation, we have shown that the proposed Advanced EDoS Eye outperformed the EDoS shield based on response 

time, attacker profile analysis and other parameters of QoS. Overall, the proposed Advanced EDoS Eye can fulfil the 

objectives by determining dynamic threshold, minimizing response time and ensuring QoS during the mitigation action.   
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