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Abstract 

Predictive modelling is increasingly important in data-driven decision-making, yet traditional statistical approaches such as 

the Generalised Linear Model (GLM) with a Gamma distribution often exhibit limited accuracy when applied to complex 

datasets. This study compared the performance of the standard GLM with an optimised iterative hybrid approach 

employing machine learning algorithms, including XGBoost, RF, Gradient Boosting GBM), and Artificial Neural 

Networks (ANN). Models were trained and tested on the same dataset, and performance was assessed using three metrics: 

coefficient of determination (R²), root mean squared error (RMSE) and mean absolute error (MAE). Hypothesis testing was 

conducted using t-tests and F-tests at a 5% significance level. Results showed that the GLM baseline achieved modest 

explanatory power (training R² = 0.23; test R² = 0.19) and comparatively high prediction errors (RMSE ≈ 83,992–84,789; 

MAE ≈ 56,943–60,897). In contrast, hybrid machine learning models performed substantially better, with XGBoost, RF, 

and ANN each achieving R² = 0.42 on the test set, RMSE values around 81,200, and competitive MAE scores. Statistical 

testing confirmed significant improvements in R² and RMSE, while MAE differences were less conclusive under unequal 

variance assumptions. These findings highlight the limitations of conventional GLMs and the enhanced generalisability of 

hybrid methods. In conclusion, the optimised iterative hybrid approach offers a more reliable and accurate predictive 

framework. It is recommended that organisations adopt hybrid models, particularly XGBoost and ANN, for predictive tasks 

requiring high levels of accuracy, while future research should investigate issues of interpretability, computational 

efficiency, and scalability in applied context. 
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1. Introduction 

Accurate risk assessment is a fundamental aspect of vehicle insurance pricing, enabling insurers to determine 

premiums that accurately reflect the underlying risk profiles of policyholders. GLMs have traditionally been the standard 

methodology in insurance due to their interpretability and statistical robustness. However, they often struggle to capture 

complex, nonlinear relationships within insurance data, resulting in suboptimal predictive performance Greberg and 

Rylander [1]. Xie and Shi [2] highlight that while GLMs facilitate feature selection more effectively than decision-tree-

based techniques or neural networks (NNs), they lack the capacity to identify intricate or nonlinear interactions between 

risk factors and the response variable, thereby affecting pricing accuracy. Consequently, this limitation necessitates the 

exploration of alternative approaches, including advanced nonlinear models. 

Similarly, Havrylenko and Heger [3] emphasise that the effectiveness of GLMs in insurance companies is contingent 

on variable selection, expert judgement, and visual performance indicators, rendering the model selection process time-

consuming and resource intensive. With the advancement of ML, new opportunities have emerged to enhance traditional 

actuarial models by integrating data-driven techniques that improve prediction accuracy and model robustness. For 

instance, Buthelezi, et al. [4] investigated the superiority of twenty-two models for pricing automobile insurance, ranging 

from traditional actuarial methods to modern statistical models such as ML algorithms. Their study explores the evolving 

landscape of risk factors and market dynamics, highlighting the potential benefits of leveraging these advanced methods. 

The findings indicate that ANNs, NNs, XGBoost, and RF outperform traditional models, demonstrating that modern 

statistical techniques can estimate risk exposure more accurately than conventional GLMs. 

However, most of these models are inherently complex and lack transparency in their decision-making processes, 

leading to their classification as 'black box' models [5]. Despite these advancements, GLMs remain preferred due to their 

ease of interpretability and ability to provide a clear understanding of how each predictor influences the outcome for 

pricing [6]. Addressing the challenge of identifying interactions between variables particularly in datasets with many 

predictors, where manual selection is time-consuming and heavily reliant on actuarial expertise requires an automated 

approach. Havrylenko and Heger [3] propose the use of hybrid NN-GLM, a model-specific interaction detection method to 

optimise claim count predictions efficiently. Wilson, et al. [6] compares GLMs with GBM and NN for predicting loss costs 

in motor insurance. The findings indicated that NN models, particularly a hybrid model combining GLM predictions with 

NN, outperform traditional GLMs and GBMs in predictive accuracy 

In line with these developments, this study explores the hybrid optimisation of GLMs through a comparative analysis 

of model performance, evaluating XGBoost, RF, GBM, and ANN for claim amount predictions. This research assesses the 

effectiveness of hybrid GLM-ML approaches against traditional GLMs. By bridging the gap between conventional 

statistical modelling and modern ML techniques, this study highlights the potential of hybrid approaches to transform 

vehicle insurance pricing. The results underscore the value of integrating ML with actuarial methods, paving the way for 

more precise, data-driven insurance models that enhance fairness, efficiency, and competitiveness in the industry. 

 

2. Literature Review 
The advancement of ML algorithms continues to demonstrate superiority in enhancing the predictive accuracy of 

pricing in motor insurance. However, Panjee and Amornsawadwatana [7] conducted a study comparing predictive 

modelling approaches for claim frequency and severity in cross-border cargo insurance. Their research identified the 

optimal modelling approach between GLMs and advanced ML techniques. The findings revealed that XGBoost is a robust 

predictor for claim frequency, whereas the GLM (Gamma) model outperforms both XGBoost and GBM in severity 

modelling. 

Similarly, Clemente, et al. [8] examined the predictive performance of the GBM in comparison to the standard GLM 

within a Poisson claim frequency framework. Their findings indicated that GBM outperformed the classical GLM in 

predicting claim frequency. However, in modelling claim severity, the traditional GLM demonstrated superior performance 

over GBM. 

Holvoet, et al. [9] further contributed to this body of research by benchmarking the performance of GLMs against 

GBMs and feed-forward neural networks (FFNNs) in insurance pricing. Their study emphasised that, while ML techniques 

such as FFNNs can capture complex patterns within the data, GLMs remain valuable due to their interpretability. 

Collectively, these studies illustrate the evolving landscape of predictive modelling in insurance. While ML techniques 

have proven effective in enhancing predictive accuracy, traditional GLMs continue to offer valuable insights, particularly 

in terms of interpretability and simplicity. Ardabili, et al. [10] further emphasise that ML algorithms are continuously 

advancing, incorporating novel learning methods that drive rapid evolution. The development of ML models increasingly 

leverages hybridisation and ensemble techniques, enhancing their computational efficiency, functionality, robustness, and 

predictive accuracy. Although numerous hybrid and ensemble ML models have been introduced, they have not been 

systematically surveyed in a comprehensive manner. 

Using the archival technique, Table 1 presents several studies where GLM has been hybridised with advanced 

statistical methods to enhance predictive accuracy, supporting the statement by Ardabili, et al. [10]. The table highlights 

recent studies from the period of 2016 to 2025 showcasing the evolving role of ML and hybrid modelling approaches in 

insurance pricing, particularly in predicting claim frequency and severity. However, studies specifically focusing on claims 

prediction, particularly in terms of claim losses, remain limited, thus underscoring the need for further research in this area. 
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Table 1. 

The studies that showcase crossbreed models against the GLMs. 

Case  

Study 

Type 

of Publication 

Author(s) Article 

Contribution 

Claims 

frequency 

and Severity 

Journal paper Wilson, et al. 

[6] 

The study explores insurance pricing in the motor insurance 

industry using ML methodologies like GLM, GBM, and ANN, 

revealing a hybrid model with better predictions, emphasising the 

need for alternative modelling approaches. 

Claims 

frequency 

Journal 

paper 

Brauer [11] The paper presents novel methods to enhance actuarial non-life 

models using transformer models for tabular data. Building on the 

foundation of combined actuarial neural networks and 

localGLMnet, the methods achieve better results than benchmark 

models while preserving the structure of the underlying actuarial 

models. 

Claims 

frequency 

Journal Paper Havrylenko 

and Heger [3] 

The quality of GLMs in insurance companies depends on the choice 

of interacting variables. An automated approach using NN, and a 

model-specific interaction detection method is proposed to improve 

predictive power. 

Claims 

frequency 

and Severity 

Journal paper Van Oirbeek, 

et al. [12] 

The study proposes a novel application of the Genetic Algorithm 

(GA) to efficiently identify main and interaction effects in GLMs, 

even in high variable count scenarios. The GA aligns GLM 

predictions with black ML models, enhancing interpretability and 

reliability. 

Claims 

frequency 

and Severity 

Journal paper Holvoet, et al. 

[9] 

The proposed approach involves training a combined actuarial 

neural network (CANN), quantifying the strength of each pairwise 

interaction, ranking them using a neural interaction detection (NID) 

algorithm, and analysing top-ranked interactions using mini-GLMs 

to identify the next-best interaction to be included in the benchmark 

GLM. 

Claims 

frequency 

Journal paper Novkaniza, et 

al. [13] 

The study employs the Poisson-Gamma Hierarchical Generalized 

Linear Model (PGHGLM) to calculate accurate vehicle insurance 

premium rates, demonstrating its practical application in generating 

age-specific premiums and enhancing fairness. 

Severity Journal paper Seyam and 

Elsalmouny 

[14] 

The Misr Insurance Company in Egypt, the largest insurance 

company in Egypt, is proposed to estimate the pure premium using 

alternative tariff systems. The system constructs insurance rates 

based on risk factors, using three statistical models: GLM, 

Generalized Linear Mixed Model (GLMM), and Generalized 

Additive Model (GAM). However, the research found that GLMM 

is the most convenient model for ratemaking 

Claims 

frequency 

and Severity 

Thesis Berry [15] The study presents a new method for estimating automobile 

insurance premiums using hidden Markov models (HMM). It 

combines a Poisson-gamma HMM and a hybrid between HMMs 

and  HMM-GLM. The models address overdispersion in claim 

counts and introduce dependence between severity and claim count. 

Simulations show HMM-GLM outperforms standard GLM in some 

cases. 

Claims 

frequency 

and Severity 

Thesis Reil [16] The thesis investigates the use of ML in non-life insurance pricing, 

comparing it to GLMs. Using XAI techniques, it found ML models 

outperform GLMs in predictive power for both severity and 

frequency claims data. However, ensuring model explainability 

remains a challenge. The study proposes a hybrid approach, 

combining ML and GLMs to improve accuracy without 

compromising interpretability. 

 

3. Methodology  
The methodology of the study includes data collection, hyperparameter tuning, and the application of both machine 

learning (ML) and traditional statistical methods such as XGBoost, Artificial Neural Networks (ANN), Gradient Boosting 

Model (GBM), and Random Forest (RF). Additionally, it details the risk evaluation and model assessment using root mean 

square error (RMSE), coefficient of determination (R²), and mean absolute error (MAE). 
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3.1. Data Collection  

The study uses historical claims data from a South African non-life vehicle insurance company from 2021-2024, 

encompassing 23 variables and categorising incidents into disaster groups and subgroups. The data is only publicly 

available upon request and withheld from the insurer's name for ethical reasons. 

 
Table 2. 

The claims data used in the study with 26 variables explained. 

 

3.2. Hyperparameter Tuning  

The crossbreeding method incorporates hyperparameter tuning, employing the grid search optimisation technique 

within ML algorithms. Following this process, the selected features were identified that enhance the algorithm’s accuracy. 

These features were subsequently deployed in a GLM with a Gamma distribution, where accuracy was observed. This step 

aimed to reduce the time required by pricing specialists to identify the most interactive variables manual that improve the 

accuracy of the GLM. 

Hyperparameter tuning, also referred to as hyperparameter optimisation, involves selecting the most suitable set of 

hyperparameters for a ML algorithm to enhance its performance on a particular task. Unlike model parameters, which are 

learned during the training phase, hyperparameters are predefined and dictate the learning process itself. Effective 

hyperparameter tuning seeks to identify the combination that minimises a predefined loss function, thereby improving the 

model's ability to generalise to unseen data [17]. Common techniques for hyperparameter optimisation include grid search, 

random search, and Bayesian optimisation. Grid search methodically evaluates all possible combinations within a specified 

subset of the hyperparameter space, while random search selects combinations randomly, potentially exploring a wider 

range of configurations [18]. Bayesian optimisation constructs a probabilistic model of the objective function and utilises it 

to iteratively select promising hyperparameter settings. The selection of appropriate hyperparameters is critical, as they can 

significantly influence the model's accuracy and computational efficiency [17]. 

 

3.3. Generalised Linear Model   

The GLM frameworks have been identified for non-life insurance pricing as the industry standard. Such frameworks 

are specified as an extension of the framework of the probability distribution linear model, which is derived from the 

exponential family and was illustrated by Nelder and Wedderburn [19]. These models seek to estimate an interesting 

variable (Y) from a set of explanatory variables (X). The GLMs are composed of three parts: 

• The first assumption is that an outcome variable (Y) belongs to an exponential family of distributions. This 

distribution family includes the normal, binomial, Poisson, and gamma distributions. Furthermore, it follows that 

random factors are independent (𝑌1 … … … 𝑌𝑛) have a similar distribution. Hoscedasticity is commonly assumed in 

the field of regression.; nevertheless, GLMs are designed to handle heteroscedasticity given by:   

Variable Explanation 

Claim Amount Amount claimed by the insured/ Policyholder 

Premium Premium paid by the insured/Policyholder 

Vehicle Make The type of car model e.g., VW, Toyota 

Vehicle Model The model of the car e.g., VW 1.2 Trendline 

Type of the vehicle The variable that describes the type of the vehicle e.g., convertible, sedan ...etc 

Age of the Vehicle The variable that describes how old is the vehicle 6 years old 

Wheels Two-wheeler or four-wheeler car e.g., 2WD 

Engine size The size of the engine in the car e.g., 1201 - 1400 

Fuel type Diesel or Unleaded e.g., Diesel 

Aspiration Adjustment The vehicle has a Turbo Yes or No e.g., Yes 

Manual or Automatic The variable that describes if the car is manual or automatic drive e.g., Automatic 

Power to Weight Ratio 

(PtWr) 

The ratio of power over the mass of the vehicle classified in CAT1 to CAT 6, CAT1 been the 

smallest ratio and CAT6 been the highest and e.g., CAT4 

Night Parking The place where the car is parked at night e.g., Locked Garage 

Day Parking The place where the car is parked during the day e.g., Yard/open parking - with Locked 

Gates/access control/electronic access 

Province/City The region in which the car is driven e.g., Limpopo 

Driver Age The age of the driver e.g., 30 

Drive Gender Male / Female 

Licence Type The type of licence the driver is allowed to drive according to the vehicle weight e.g., B 

Claim Incident Type of claim that led to the incident e.g., storms 

Disaster Group Is the Incident Technological or Natural 

Disaster Subgroup The subgroup of the incident classified as Climatological, Geophysical, Hydrological, 

Malicious damage, Meteorological and Miscellaneous accident e.g., Miscellaneous accident 

Start Date The date on which the policy was in force/activated e.g., 12/06/2021 

End Date Date in which the policy is expected to expire or end e.g., 12/06/2022 

Claim Date Date of the claim incurred 124/09/2021 
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𝑓(𝑦𝑖|𝜃𝑖 , 𝜙) = 𝑒𝑥𝑝 (
𝑦𝑖𝜃𝑖−𝑏(𝜃𝑖)

𝜙
+ 𝑐(𝑦𝑖 , 𝜙))          𝑦𝑖 ∈ 𝑃                         (1) 

Where p represents the subassembly that is a part of ℕ or ℝ set, 𝜃𝑖 ∈  𝜃 the natural parameter and 𝜙  is the scale 

parameter.  

Then the probability density for the variable 𝑌1, 𝑌2, ⋯ , 𝑌𝑛  is given by the following expression: 

𝑓(𝑦|𝜃, 𝜙) = ∏ 𝑓(𝑦𝑖|𝜃𝑖 , 𝜙)𝑛
𝑖=1                    (2) 

By applying the necessary mathematical manipulation, the equation 4.10 can be rewritten    by: 

𝑓(𝑦|𝜃, 𝜙) = 𝑒𝑥𝑝 (
∑ 𝑦𝑖𝜃𝑖

𝑛
𝑖=1 −∑ 𝑏(𝜃𝑖)

𝑛
𝑖=1

𝜙
+ ∑ 𝑐(𝑦𝑖 , 𝜃𝑖)

𝑛
𝑖=1 )                                              (3) 

• A linear predictor, which has the familiar form of an ordinary linear model. 

𝜑𝑖 = 𝛼 + 𝛽𝑖𝑥𝑖1
+ 𝐵2𝑥𝑖2 + ⋯ + 𝐵𝑘𝑥𝑖𝑘                                  (4) 

•  Given the parameters 𝛽1, 𝛽2, ⋯ , 𝐵𝑘  through the function (𝑔) of the mean (µ) written in the linear form for a 

variable X 

𝑔(𝜑𝑖) = 𝑿𝛽 = 𝛽0 + ∑ 𝐵𝑖1
𝑥𝑖𝑘

𝑛

𝑗=1
+ 𝜖                 (5) 

The function (𝑔) is known as a link function given that it is a monotonous and differentiable f𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑔) connected 

to the linear predictor, mean (µ) and error 𝜖. The link function transforms the expected value of the response variable 𝜇𝑖 =
𝐸[𝑦𝑖|{𝑥1 , … , 𝑥𝑛}] and since it is invertible, we then get: 

  

 𝜇𝑖 = 𝑔−1(𝜑𝑖)                (6) 

 

The GLM can be a linear or nonlinear regression model that transforms the expected outcome of a response variable. 

Furthermore, the conditional variance of a distribution in the exponential family is determined by its mean and a constant 

dispersion parameter, indicating the specific distribution used. 

 
 Table 3. 

Shows the distribution of GMLs with their link function. 

Distribution Link Function Variance Function 

Gaussian Identity 𝜙 

Binomial Logit 𝜇𝑖(1 − 𝜇𝑖)

𝜂𝑖

 

Poisson Log 𝜇𝑖 

Inverse Gaussian Inverse Square 𝜙𝜇𝑖
3 

Gamma Inverse 𝜙𝜇𝑖
2 

 

3.4. Random Forest 

Breiman [20] introduced the Random Forest (RF) classifier, which is an ensemble learning method built on multiple 

classification trees ℎ𝑘(𝑋|𝜃𝑘) , where each tree has parameters 𝜃𝑘 randomly picked from a model random vector 𝛩.  

For the final classification, the RF algorithm aggregates the predictions from all trees in the ensemble. Specifically, 

given an input 𝑋 each tree ℎ𝑘(𝑋)  cast a vote for the class label, and the class with the most popular votes wins.  

Formally, provided dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}ⅈ=1
n , we train multiple classifier ℎ𝑘(𝑋), where each  classifier is defined as:  

  ℎ𝑘(𝑋)  =  ℎ(𝑋|𝜃𝑘)           (7) 

Each tree predictor is associated with an outcome   𝑦 ∈ {±1} for classification tasks.  

For regression the algorithm is given: 

(a) From the training data, create a bootstrap sample Z∗ of size N. 

(b) To the bootstrapped data, grow a random forest tree  𝑇𝑠 by recursively repeating the following procedures for 

each terminal node of the tree until the minimal node size 𝑛𝑚𝑖𝑛  is attained. 

I. From the p variables, choose 𝑚 variables at random. 

II. Choose the optimal variable/split point from the 𝑚. 

III. Divide the node into two daughters. 

    1.  Ensemble on output {𝑇𝑠}1
𝑠  trees 

Now predict new variable x given by: 

𝑓𝑟𝑓
𝑆 (𝑥) =

1

𝑆
∑ 𝑇𝑠(𝑥)𝑆

𝑠=1                                                                                            (8) 

This approach ensures robustness and reduces variance while maintaining high predictive accuracy 

 

3.5. XGBoost  

XGBoost is a method that includes Friedman [21] boosting model which was created by Chen and Guestrin [22]. It is a 

boosting integration model that combines the gradient boost method and decision trees. Instead of utilising the search 

method, XGBoost directly uses the loss function's first and second derivative values, improving algorithm performance 

through approaches such as pre-ordering and node number of bits. After incorporating the regularisation term, the XGBoost 

model selects a basic model that performs well. The regularisation item is utilised in each iteration to reduce weak learner 
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overfitting and does not contribute to the final model's integration. Taylor's formula is applied in each iteration to enlarge 

the goal function [22]. The equation is: 

𝑠(𝑡) = ∑ [𝑙
𝑛

𝑡=1
(𝑦𝑡 , 𝑦̂(𝑡−1)) + 𝑧𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡(𝑥)2] + 𝜑(𝑓𝑡)                                      (9) 

Where  𝑦̂(𝑡−1) represents the predictive values of the (𝑡 − 1)𝑡ℎiterations, 𝑧𝑖 and ℎ𝑖  are the first and second derivates, 𝜑(𝑓𝑡) 

is the regulation item, t is the 𝑡𝑡ℎ interaction, and 𝑖 is the 𝑖𝑡ℎsample. The complexity of the tree is given by: 

𝜑 = 𝛾𝑇𝑡 +
1

2
∑ 𝜔𝑗

2
𝑇

𝑗=1
              (10) 

Where 𝑇𝑡 is the number of leaf nodes in the round t iteration, 𝜔𝑗  represents the weight of the 𝑗𝑡ℎleaf node. 

 

3.6. Gradient Boost Model 

The GBM is a boosting-like algorithm for regression [21]. The algorithm iteratively combines weak learners with those 

that do marginally better than the RF to create strong learners [23]. For a given training data set 𝛿 = {𝑥𝑖3
𝑦𝑖}

𝑖

𝑛
 , the aim of 

the algorithm is to estimate an approximation 𝜔(𝒙), in the function 𝜔(𝒙), which directs the input function X into the output 

y, by reducing the predicted value of the given loss function, 𝐿(𝑦1, 𝜔(𝒙)). Then the algorithm builds an addictive 

approximation 𝜔 ∗ (𝒙) as the sum of weighted functions  

𝜔𝑚(𝑥) = 𝜔𝑚−1(𝑥) + 𝑝𝑚ℎ𝑚(𝑥)                                  (11) 

Where the weight of the 𝑚𝑡ℎ function, ℎ𝑚(𝑥) is 𝑝𝑚.  

These functions represent the ensemble's models, such as decision trees. The approximation is created iteratively. First, 

a constant approximation of 𝜔 ∗ (𝒙)  is derived as 

𝐹0(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝛼)𝑁
𝑖=1                                                                                    (12) 

The following models are predicted to minimise: 

(𝑝𝑚,ℎ𝑚(𝒙)) = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝜔𝑚−1(𝒙𝒊))
𝑁

𝑖=1
 + 𝑝ℎ(𝒙𝒊))                                         (13) 

Instead of explicitly addressing the optimisation issue, consider each ℎ𝑚 as a greedy step in a gradient descent 

optimisation for 𝜔 ∗. To train each model, hm, on a fresh dataset 𝛿 = {𝑥𝑖3
𝑦𝑖}

𝑖

𝑛
, the pseudo-residuals, 𝑟𝑚𝑖 , are computed 

using: 

𝑟𝑚𝑖 = [
𝜕𝐿(𝑦𝑖,𝜔(𝑥))

𝜕𝜔(𝑥)
]

𝜔(𝒙)=𝜔𝑚−1(𝑥) 
                                                                                (14) 

The value of 𝑝𝑚 is determined by solving a line search optimisation issue. If the iterative procedure is not correctly 

regularised, this technique may experience overfitting   . If the model completely fits the pseudo-residues for certain loss 

functions, such as quadratic loss, the process may end prematurely if the pseudo-residues become zero in the subsequent 

iteration. Multiple regularisation hyper-parameters are used to manage the additive process of gradient boosting. 

Several regularisation hyper-parameters are used to manage the additive gradient boosting process. To regularise 

gradient boosting, use shrinkage to lower each gradient decent step: 𝜔𝑚(𝒙) = 𝜔𝑚−1(𝒙) + 𝑣𝑝𝑚ℎ𝑚(𝒙) , where 𝑣 = (0, 1.0]. 

The value of 𝑣 is typically set to 0.1. Limiting the complexity of learned models allows for additional regularisation. To 

restrict the depth of decision trees, we can provide the minimum number of instances required to divide a node. Unlike 

random forest, gradient boosting's default hyper-parameters limit the expressive capability of trees (e.g., depth to ≈ 3 − 5) 

[24]. Finally, another family of hyper-parameters is provided in the various versions. Gradient boosting techniques, such as 

random subsampling, can enhance ensemble generalisation [21]. 

 

3.7. Artificial Neural Network 

ANN is a widely used supervised machine learning technique among a variety of domains. It comprises three layers: 

input, hidden, and output. Its performance is heavily influenced by its structure, including the hidden layers and neurons 

used [25]. In this study, the feedforward back-propagation neural network, a multilayer perceptron network, is chosen for 

its straightforward methodology and broad application. Backpropagation (BP) is a very efficient and widely used learning 

method in multi-layer networks [26, 27]. 

Now suppose there are 𝑛 neurons in the input layer, seven in the hidden layer, and two in the output layer. Let the input 

vector be: 

𝑋𝑘 = (𝑥1𝑘 + 𝑥2𝑘,⋅⋯,𝑥𝑛𝑘)  for  k = 1, 2,..., m.                                                            (15) 

The weights 𝛼𝑖𝑗 link the input layer to the hidden layer, while 𝛽𝑖𝑗 connect the hidden layer to the output layer value, 

with i = 1, 2,..., n, j = 1, 2,..., 5, and 𝑙 = 1, 2. Neurons within the same layer are not interconnected, but connections exist 

between the input, hidden, and output layers. 

Assuming the activation function is the sigmoid function, input samples 𝑋1; 𝑋2,⋯, 𝑋𝑚 are sequentially processed. 

Selecting the k-th input sample 𝑋𝑘 , the corresponding hidden layer input vector is: 

 𝑌𝑘 = (𝑦1𝑘 + 𝑦2𝑘,⋅⋯,𝑦7𝑘)                                                                                            (16) 

And the hidden layer output is: 

𝑍𝑘 = (𝑧1𝑘 + 𝑧2𝑘,⋅⋯,𝑧𝑛𝑘)                                                                                             (17) 

The output vector is denoted as: 

Ŷk = (𝑦̂1𝑘 , 𝑦̂2𝑘)                                                                                                           (18) 

And the output layer output as: 
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Ẑk = (𝑧̂1𝑘, 𝑧̂2𝑘)                                                                                                            (19) 

The threshold of each neuron in the output layer is denoted as 𝑎𝑗 and 𝑏𝑗 the threshold of each neuron in the output layer  

the inspirit function is given by 𝑓(𝜑𝑖) , µ the learning parameter and  expected is given by: 

 
1

2
∑ (𝑟𝑙𝑘 − 𝑧̂𝑙𝑘)22

𝑖=1
                                                                                                                           (20) 

To compute the input and output of neurons in the hidden and output layers, the following derivatives are used: 

𝑦𝑗𝑘 = ∑ 𝛼𝑖𝑗𝑥𝑖𝑘
𝑛

𝑗=1
− 𝑎𝑗,                                                                                                                    (21) 

𝑧𝑗𝑘 = 𝑓(𝑦𝑗𝑘
),                                                                                                                                      (22) 

𝑦̂1𝑘 = ∑ 𝛽𝑗𝑙
7

𝑗=1
𝑧𝑗𝑘 − 𝑏𝑙,                                                                                                                     (23) 

𝑍̂𝑙𝑘 = 𝑓(𝑦̃𝑙𝑘)                                                                                                                                          (24) 

To calculate the partial derivative of the error function for each neuron in the output layer, the predicted and actual 

network outputs are derived as follows. 

𝜕𝐸

𝜕𝑦̂𝑙𝑘

=
𝜕 [

1
2

∑ (𝑟𝑙𝑘 − 𝑧̂𝑙𝑘)2]
2

𝑙=1

𝜕𝑦̂𝑙𝑘

 

 =

𝜕 [
1
2

∑ (𝑟𝑙𝑘 − 𝑓(𝑦̃𝑙𝑘))
2

 ]
2

𝑙=1

𝜕𝑦̂𝑙𝑘

 

= − ∑ (𝑟𝑙𝑘 − 𝑧̂𝑙𝑘)𝑓1(𝑦̂1)
2

1=1

𝛥

=
− 𝛿𝑗𝑘                                                                                   (25) 

To compute the partial derivative of the error function for each neuron in the hidden layer, the algorithm uses the 

output layer, output layer, and output of the hidden layer as follows: 

  

𝜕𝐸

𝜕𝑦𝑙𝑘
=

𝜕 [
1

2
∑ (𝑟𝑙𝑘−𝑧̂𝑙𝑘)2]

2
𝑙=1

𝜕𝑦𝑙𝑘
   = − (∑ 𝛿𝑙𝑘𝛽𝑗𝑙

2

1=1
) 𝑓′(𝑦𝑗𝑘)    = −pjk.                              (26) 

Using the above two formulae, we can calculate the change in weight value (𝛽𝑗𝑙) for each modification by:   

𝛥𝛽𝑗𝑙
= −𝜇

𝜕𝐸

𝜕𝛽𝑗𝑖
 .

𝜕𝑦̃𝑖𝑘

𝜕𝛽𝑗𝑙
= 𝜇𝛿1𝑘𝑧𝑗𝑘.                                                                                    (27) 

 Immediately follows N adjustments, the (𝑁 + 1)𝑡ℎ value is a 

𝛽𝑗𝑙

𝑁+1 = 𝛽𝑗𝑖
𝑁 + 𝛥𝛽𝑗𝑙

                                                                                                       (28) 

Similarly, we can obtain the change in weight value 𝛼𝑖𝑗 in each adjustment and the (N + 1) th value after N adjustments. 

𝛥𝛼𝑖𝑗 = −𝜇
𝜕𝐸

𝜕𝛼𝑖𝑗
= 𝜇𝑥𝑖𝑘𝑃𝑗𝑘                                                                                              (29) 

𝛼𝑖𝑗
𝑁+1 = 𝛼𝑖𝑗

𝑁 + 𝛥𝛼𝑖𝑗 ,                                                                                                         (30) 

The global error can be calculated as follows. 

𝐸 =
1

2𝑚
∑ ∑ (𝑟𝑙𝑘 − 𝑧̂𝑙𝑘)22

𝑖=1
.

𝑚

𝑘=1
                                                                                    (31) 

Finally, in the algorithm, we compare the size of the global error with the setting error. If the global error exceeds the 

setting error, we keep adjusting the weights until the setting error is met. 

 

3.8. Risk Evaluation and Model Assessment  

Evaluating the performance of the crossbreed models , RMSE, 𝑅2 and MAE are used. The mathematical formulas for 

these metrics are explained below. 

 

3.9. RMSE  

RMSE is the average difference between a statistical model's projected values and its actual results. It is 

mathematically defined as the residuals' standard deviation. The residuals reflect an average distance between the 

regression line and the data points. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌̅𝑗 − 𝑌𝑗)

2𝑁

𝑗=1
                                                                                (32) 

 

3.10. MAE 

MAE is a measure of the average magnitude of errors in a set of predictions, without regard for direction [28]. It is 

calculated as the average absolute difference between predicted and actual values and used to evaluate the efficacy of a 

regression model. 

 

𝑀𝐴𝐸 =  
1

𝑁
∑ | 𝑌̅𝑗 − 𝑌𝑗  |2𝑁

𝑗=1
                                                                                   (33) 
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𝑅2 

The 𝑅2 approach is used to forecast and explain a model's future results [29]. This method is sometimes referred to as 

R squared and serves as a guideline for assessing the model's correctness. 

𝑅2 = 1 − 
∑ (𝑌̂ℎ−𝑌̅ℎ)2𝑁

ℎ=1

∑ (𝑌ℎ−𝑌̅ℎ)2𝑁
𝑛=1

                                                                                           (34) 

 

4. Results 
4.1. Comparative Analysis 

The results in Table 4 evaluate the standard method (GLM with Gamma distribution) and the optimised iterative 

(hybrid) method demonstrates a substantial improvement in predictive performance when using machine learning 

approaches such as XGBoost, RF, GBM, and ANN. 

On the training set, the standard GLM achieved a modest coefficient of determination (R² = 0.23), alongside relatively 

high error values (RMSE = 83,992; MAE = 56,943). In contrast, the hybrid machine learning models yielded markedly 

higher explanatory power, with R² values consistently around 0.39–0.40, and lower error metrics. Notably, XGBoost and 

ANN exhibited the best balance of predictive fit, producing the lowest RMSE (≈ 82,066 and 82,078, respectively) relative 

to other models. 

On the test set, the performance gap was even more evident. The GLM baseline recorded R² = 0.19 with higher errors 

(RMSE = 84,789; MAE = 60,897), whereas all hybrid models outperformed it substantially. XGBoost, RF, and ANN each 

achieved R² = 0.42, with RMSE values near 81,200 and MAE values close to 61,500. These results confirm the robustness 

of the machine learning approaches, which not only generalised better than the standard method but also delivered lower 

prediction errors. 

Overall, the findings suggest that the optimised iterative hybrid method is superior to the standard GLM baseline in 

both training and testing phases. Among the tested models, XGBoost, RF, and ANN demonstrate the strongest 

generalisation performance, making them more suitable for practical predictive applications in this context. 

 
Table 4. 

Optimised iterative methods against the GLM with GAMMA distribution  

Standard Method Optimised iterative method (Hybrid) 𝑹𝟐 RMSE MAE 

GLM(GAMMA) Train  NONE 0.23 83992 56943 

XGBoost 0.40 82066 63599 

RF 0.40 82434 63821 

GBM 0.39 83033 64031 

ANN 0.40 82078 63600 

GLM(GAMMA) Test None 0.19 84789 60897 

XGBoost  0.42 81200 61500 

RF 0.42 81222 61589 

GBM 0.40 83032 62300 

ANN 0.42 81221 61549 

 

4.2. Test Statistics  

𝐻0: The standard GLM with a Gamma distribution and the optimised iterative hybrid approach yield similar predictive 

performance.  

𝐻𝑎: The converse is true  

𝛼 ∶ 0.05  

  
Table 5. 

Two-Sample t-Test Results for Model Performance Measures. 

Performance Measures Method Variances DF T Value Pr > |t| 

R^2 Pooled Equal 8 -3.33 0.0104 

 Satterthwaite Unequal 3.5651 -5.03 0.0099 

MAE Pooled Equal 8 16.61 <.0001 

 Satterthwaite Unequal 1.0898 9.6 0.055 

RMSE Pooled Equal 8 5.03 0.001 

 Satterthwaite Unequal 3.0798 7.26 0.0049 

 

5. Conclusion 
At the 5% significance level, the optimised iterative hybrid GLM demonstrates statistically significant differences from 

the standard GLM across key predictive performance measures. The improvement in model fit is supported by significantly 

higher R² values under both variance assumptions. RMSE is also consistently and significantly different, indicating a 

meaningful change in predictive precision. MAE shows a significant difference under the pooled assumption but not under 

the unequal variance test, suggesting that this result should be interpreted with caution. Taken together, these findings 
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indicate that the optimised GLM offers measurable improvements in explanatory power, although the evidence regarding 

predictive accuracy is more mixed. 

 

6. Discussion  
The comparative analysis between the standard Generalised Linear Model (GLM) with a Gamma distribution and the 

optimised iterative hybrid method highlights the advantages of employing advanced machine learning techniques in 

predictive modelling. The baseline GLM demonstrated relatively weak explanatory power (R² = 0.23 on training, 0.19 on 

testing) alongside comparatively higher prediction errors (RMSE = 83,992–84,789; MAE = 56,943–60,897). In contrast, 

hybrid machine learning models XGBoost, RF, GBM, and ANN consistently achieved superior performance. 

On both the training and testing datasets, XGBoost, RF, and ANN delivered the strongest predictive performance, each 

producing R² values around 0.40–0.42 and lower error metrics relative to the GLM baseline. These results confirm that the 

optimised hybrid method generalises better to unseen data, thereby reducing the risk of overfitting while maintaining 

predictive accuracy. XGBoost and ANN provided the lowest RMSE scores, underscoring their capacity to minimise 

prediction error. This aligns with the findings of previous studies, such as those by Buthelezi et al. (2024) [4] and Wilson et 

al. (2024) [6], which highlight the potential of ML techniques to outperform conventional actuarial models in predictive 

tasks. 

The formal hypothesis testing further substantiates these empirical observations. At a 5% significance level, the hybrid 

models exhibited statistically significant improvements in R² and RMSE, reinforcing the claim that they offer enhanced 

explanatory power and predictive precision compared with the standard GLM. While the results for MAE were significant 

under the pooled variance assumption, they did not hold under the unequal variance test, suggesting that improvements in 

absolute error should be interpreted with caution. This nuance highlights that while the hybrid models generally outperform 

the GLM, the magnitude of improvement may vary depending on the performance metric considered. 

 

7. Conclusion 
The findings of this study demonstrate that the optimised iterative hybrid approach offers a robust and statistically 

significant improvement over the standard GLM with Gamma distribution. The machine learning models particularly 

XGBoost, RF, and ANN not only enhanced explanatory power but also improved predictive precision, as evidenced by 

higher R² values and lower RMSE scores across both training and testing phases. 

Although the evidence for improvements in MAE is less conclusive, the overall performance gains indicate that the 

hybrid method represents a more effective predictive modelling framework than the traditional GLM baseline. 

Consequently, these results suggest that integrating iterative optimisation with advanced ML algorithms can provide a more 

reliable and generalisable solution for predictive analytics in this context. 

 

7.1. Limitations 

Despite the promising results, this study has few limitations that warrant consideration. Firstly, the analysis is based on 

historical claims data from a single South African non-life vehicle insurance company, which may limit the generalisability 

of the findings to other contexts or regions. Future research should consider a broader dataset encompassing diverse 

geographical and market conditions to validate the robustness of the hybrid models. Furthermore, the study employs 

specific ML techniques and hyperparameter tuning methods, which may not represent the full spectrum of available 

optimisation strategies. Exploring alternative ML algorithms and optimisation techniques could provide additional insights 

into the most effective approaches for enhancing GLM performance in insurance pricing. 
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