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Abstract

Predictive modelling is increasingly important in data-driven decision-making, yet traditional statistical approaches such as
the Generalised Linear Model (GLM) with a Gamma distribution often exhibit limited accuracy when applied to complex
datasets. This study compared the performance of the standard GLM with an optimised iterative hybrid approach
employing machine learning algorithms, including XGBoost, RF, Gradient Boosting GBM), and Artificial Neural
Networks (ANN). Models were trained and tested on the same dataset, and performance was assessed using three metrics:
coefficient of determination (R2), root mean squared error (RMSE) and mean absolute error (MAE). Hypothesis testing was
conducted using t-tests and F-tests at a 5% significance level. Results showed that the GLM baseline achieved modest
explanatory power (training R* = 0.23; test R* = 0.19) and comparatively high prediction errors (RMSE ~ 83,992-84,789;
MAE = 56,943-60,897). In contrast, hybrid machine learning models performed substantially better, with XGBoost, RF,
and ANN each achieving R = 0.42 on the test set, RMSE values around 81,200, and competitive MAE scores. Statistical
testing confirmed significant improvements in R2 and RMSE, while MAE differences were less conclusive under unequal
variance assumptions. These findings highlight the limitations of conventional GLMs and the enhanced generalisability of
hybrid methods. In conclusion, the optimised iterative hybrid approach offers a more reliable and accurate predictive
framework. It is recommended that organisations adopt hybrid models, particularly XGBoost and ANN, for predictive tasks
requiring high levels of accuracy, while future research should investigate issues of interpretability, computational
efficiency, and scalability in applied context.
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1. Introduction

Accurate risk assessment is a fundamental aspect of vehicle insurance pricing, enabling insurers to determine
premiums that accurately reflect the underlying risk profiles of policyholders. GLMs have traditionally been the standard
methodology in insurance due to their interpretability and statistical robustness. However, they often struggle to capture
complex, nonlinear relationships within insurance data, resulting in suboptimal predictive performance Greberg and
Rylander [1]. Xie and Shi [2] highlight that while GLMs facilitate feature selection more effectively than decision-tree-
based techniques or neural networks (NNs), they lack the capacity to identify intricate or nonlinear interactions between
risk factors and the response variable, thereby affecting pricing accuracy. Consequently, this limitation necessitates the
exploration of alternative approaches, including advanced nonlinear models.

Similarly, Havrylenko and Heger [3] emphasise that the effectiveness of GLMs in insurance companies is contingent
on variable selection, expert judgement, and visual performance indicators, rendering the model selection process time-
consuming and resource intensive. With the advancement of ML, new opportunities have emerged to enhance traditional
actuarial models by integrating data-driven techniques that improve prediction accuracy and model robustness. For
instance, Buthelezi, et al. [4] investigated the superiority of twenty-two models for pricing automobile insurance, ranging
from traditional actuarial methods to modern statistical models such as ML algorithms. Their study explores the evolving
landscape of risk factors and market dynamics, highlighting the potential benefits of leveraging these advanced methods.
The findings indicate that ANNs, NNs, XGBoost, and RF outperform traditional models, demonstrating that modern
statistical techniques can estimate risk exposure more accurately than conventional GLMs.

However, most of these models are inherently complex and lack transparency in their decision-making processes,
leading to their classification as 'black box' models [5]. Despite these advancements, GLMs remain preferred due to their
ease of interpretability and ability to provide a clear understanding of how each predictor influences the outcome for
pricing [6]. Addressing the challenge of identifying interactions between variables particularly in datasets with many
predictors, where manual selection is time-consuming and heavily reliant on actuarial expertise requires an automated
approach. Havrylenko and Heger [3] propose the use of hybrid NN-GLM, a model-specific interaction detection method to
optimise claim count predictions efficiently. Wilson, et al. [6] compares GLMs with GBM and NN for predicting loss costs
in motor insurance. The findings indicated that NN models, particularly a hybrid model combining GLM predictions with
NN, outperform traditional GLMs and GBM s in predictive accuracy

In line with these developments, this study explores the hybrid optimisation of GLMs through a comparative analysis
of model performance, evaluating XGBoost, RF, GBM, and ANN for claim amount predictions. This research assesses the
effectiveness of hybrid GLM-ML approaches against traditional GLMs. By bridging the gap between conventional
statistical modelling and modern ML techniques, this study highlights the potential of hybrid approaches to transform
vehicle insurance pricing. The results underscore the value of integrating ML with actuarial methods, paving the way for
more precise, data-driven insurance models that enhance fairness, efficiency, and competitiveness in the industry.

2. Literature Review

The advancement of ML algorithms continues to demonstrate superiority in enhancing the predictive accuracy of
pricing in motor insurance. However, Panjee and Amornsawadwatana [7] conducted a study comparing predictive
modelling approaches for claim frequency and severity in cross-border cargo insurance. Their research identified the
optimal modelling approach between GLMs and advanced ML techniques. The findings revealed that XGBoost is a robust
predictor for claim frequency, whereas the GLM (Gamma) model outperforms both XGBoost and GBM in severity
modelling.

Similarly, Clemente, et al. [8] examined the predictive performance of the GBM in comparison to the standard GLM
within a Poisson claim frequency framework. Their findings indicated that GBM outperformed the classical GLM in
predicting claim frequency. However, in modelling claim severity, the traditional GLM demonstrated superior performance
over GBM.

Holvoet, et al. [9] further contributed to this body of research by benchmarking the performance of GLMs against
GBMs and feed-forward neural networks (FFNNS) in insurance pricing. Their study emphasised that, while ML techniques
such as FFNNSs can capture complex patterns within the data, GLMs remain valuable due to their interpretability.

Collectively, these studies illustrate the evolving landscape of predictive modelling in insurance. While ML techniques
have proven effective in enhancing predictive accuracy, traditional GLMs continue to offer valuable insights, particularly
in terms of interpretability and simplicity. Ardabili, et al. [10] further emphasise that ML algorithms are continuously
advancing, incorporating novel learning methods that drive rapid evolution. The development of ML models increasingly
leverages hybridisation and ensemble techniques, enhancing their computational efficiency, functionality, robustness, and
predictive accuracy. Although numerous hybrid and ensemble ML models have been introduced, they have not been
systematically surveyed in a comprehensive manner.

Using the archival technique, Table 1 presents several studies where GLM has been hybridised with advanced
statistical methods to enhance predictive accuracy, supporting the statement by Ardabili, et al. [10]. The table highlights
recent studies from the period of 2016 to 2025 showcasing the evolving role of ML and hybrid modelling approaches in
insurance pricing, particularly in predicting claim frequency and severity. However, studies specifically focusing on claims
prediction, particularly in terms of claim losses, remain limited, thus underscoring the need for further research in this area.
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Table 1.

The studies that showcase crossbreed models against the GLMs.

Case Type Author(s) Avrticle

Study of Publication Contribution

Claims Journal paper Wilson, et al. | The study explores insurance pricing in the motor insurance
frequency [6] industry using ML methodologies like GLM, GBM, and ANN,

and Severity

revealing a hybrid model with better predictions, emphasising the
need for alternative modelling approaches.

Claims Journal Brauer [11] The paper presents novel methods to enhance actuarial non-life

frequency paper models using transformer models for tabular data. Building on the
foundation of combined actuarial neural networks and
localGLMnet, the methods achieve better results than benchmark
models while preserving the structure of the underlying actuarial
models.

Claims Journal Paper Havrylenko The quality of GLMs in insurance companies depends on the choice

frequency and Heger [3] | of interacting variables. An automated approach using NN, and a
model-specific interaction detection method is proposed to improve
predictive power.

Claims Journal paper Van Oirbeek, | The study proposes a novel application of the Genetic Algorithm

frequency etal. [12] (GA) to efficiently identify main and interaction effects in GLMs,

and Severity even in high variable count scenarios. The GA aligns GLM
predictions with black ML models, enhancing interpretability and
reliability.

Claims Journal paper Holvoet, et al. | The proposed approach involves training a combined actuarial

frequency [9] neural network (CANN), quantifying the strength of each pairwise

and Severity

interaction, ranking them using a neural interaction detection (NID)
algorithm, and analysing top-ranked interactions using mini-GLMs
to identify the next-best interaction to be included in the benchmark
GLM.

Claims
frequency

Journal paper

Novkaniza, et

al. [13]

The study employs the Poisson-Gamma Hierarchical Generalized
Linear Model (PGHGLM) to calculate accurate vehicle insurance
premium rates, demonstrating its practical application in generating
age-specific premiums and enhancing fairness.

Severity

Journal paper

Seyam and

Elsalmouny
[14]

The Misr Insurance Company in Egypt, the largest insurance
company in Egypt, is proposed to estimate the pure premium using
alternative tariff systems. The system constructs insurance rates
based on risk factors, using three statistical models: GLM,
Generalized Linear Mixed Model (GLMM), and Generalized
Additive Model (GAM). However, the research found that GLMM
is the most convenient model for ratemaking

Claims
frequency
and Severity

Thesis

Berry [15]

The study presents a new method for estimating automobile
insurance premiums using hidden Markov models (HMM). It
combines a Poisson-gamma HMM and a hybrid between HMMs
and HMM-GLM. The models address overdispersion in claim
counts and introduce dependence between severity and claim count.
Simulations show HMM-GLM outperforms standard GLM in some
cases.

Claims
frequency
and Severity

Thesis

Reil [16]

The thesis investigates the use of ML in non-life insurance pricing,
comparing it to GLMs. Using XAl techniques, it found ML models
outperform GLMs in predictive power for both severity and
frequency claims data. However, ensuring model explainability
remains a challenge. The study proposes a hybrid approach,
combining ML and GLMs to improve accuracy without
compromising interpretability.

3. Methodology

The methodology of the study includes data collection, hyperparameter tuning, and the application of both machine
learning (ML) and traditional statistical methods such as XGBoost, Artificial Neural Networks (ANN), Gradient Boosting
Model (GBM), and Random Forest (RF). Additionally, it details the risk evaluation and model assessment using root mean
square error (RMSE), coefficient of determination (R?), and mean absolute error (MAE).

145



3.1. Data Collection

International Journal of Innovative Research and Scientific Studies, 9(1) 2026, pages: 143-152

The study uses historical claims data from a South African non-life vehicle insurance company from 2021-2024,
encompassing 23 variables and categorising incidents into disaster groups and subgroups. The data is only publicly
available upon request and withheld from the insurer's name for ethical reasons.

Table 2.

The claims data used in the study with 26 variables explained.

Variable Explanation

Claim Amount Amount claimed by the insured/ Policyholder
Premium Premium paid by the insured/Policyholder
Vehicle Make The type of car model e.g., VW, Toyota
Vehicle Model The model of the car e.g., VW 1.2 Trendline

Type of the vehicle

The variable that describes the type of the vehicle e.g., convertible, sedan ...etc

Age of the Vehicle

The variable that describes how old is the vehicle 6 years old

Wheels Two-wheeler or four-wheeler car e.g., 2WD
Engine size The size of the engine in the car e.g., 1201 - 1400
Fuel type Diesel or Unleaded e.g., Diesel

Aspiration Adjustment

The vehicle has a Turbo Yes or No e.g., Yes

Manual or Automatic

The variable that describes if the car is manual or automatic drive e.g., Automatic

Power to Weight Ratio
(PtWr)

The ratio of power over the mass of the vehicle classified in CAT1 to CAT 6, CAT1 been the
smallest ratio and CAT6 been the highest and e.g., CAT4

Night Parking

The place where the car is parked at night e.g., Locked Garage

Day Parking

The place where the car is parked during the day e.g., Yard/open parking - with Locked
Gates/access control/electronic access

Province/City

The region in which the car is driven e.g., Limpopo

Driver Age

The age of the driver e.g., 30

Drive Gender

Male / Female

Licence Type

The type of licence the driver is allowed to drive according to the vehicle weight e.g., B

Claim Incident

Type of claim that led to the incident e.g., storms

Disaster Group

Is the Incident Technological or Natural

Disaster Subgroup

The subgroup of the incident classified as Climatological, Geophysical, Hydrological,
Malicious damage, Meteorological and Miscellaneous accident e.g., Miscellaneous accident

Start Date The date on which the policy was in force/activated e.g., 12/06/2021
End Date Date in which the policy is expected to expire or end e.g., 12/06/2022
Claim Date Date of the claim incurred 124/09/2021

3.2. Hyperparameter Tuning
The crossbreeding method incorporates hyperparameter tuning, employing the grid search optimisation technique

within ML algorithms. Following this process, the selected features were identified that enhance the algorithm’s accuracy.
These features were subsequently deployed in a GLM with a Gamma distribution, where accuracy was observed. This step
aimed to reduce the time required by pricing specialists to identify the most interactive variables manual that improve the
accuracy of the GLM.

Hyperparameter tuning, also referred to as hyperparameter optimisation, involves selecting the most suitable set of
hyperparameters for a ML algorithm to enhance its performance on a particular task. Unlike model parameters, which are
learned during the training phase, hyperparameters are predefined and dictate the learning process itself. Effective
hyperparameter tuning seeks to identify the combination that minimises a predefined loss function, thereby improving the
model's ability to generalise to unseen data [17]. Common techniques for hyperparameter optimisation include grid search,
random search, and Bayesian optimisation. Grid search methodically evaluates all possible combinations within a specified
subset of the hyperparameter space, while random search selects combinations randomly, potentially exploring a wider
range of configurations [18]. Bayesian optimisation constructs a probabilistic model of the objective function and utilises it
to iteratively select promising hyperparameter settings. The selection of appropriate hyperparameters is critical, as they can
significantly influence the model's accuracy and computational efficiency [17].

3.3. Generalised Linear Model

The GLM frameworks have been identified for non-life insurance pricing as the industry standard. Such frameworks
are specified as an extension of the framework of the probability distribution linear model, which is derived from the
exponential family and was illustrated by Nelder and Wedderburn [19]. These models seek to estimate an interesting
variable (Y) from a set of explanatory variables (X). The GLMs are composed of three parts:

e The first assumption is that an outcome variable (Y) belongs to an exponential family of distributions. This
distribution family includes the normal, binomial, Poisson, and gamma distributions. Furthermore, it follows that
random factors are independent (Y; ... ... ... Y,) have a similar distribution. Hoscedasticity is commonly assumed in
the field of regression.; nevertheless, GLMs are designed to handle heteroscedasticity given by:
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i0i—b(0;
116, ®) = exp (ny) + c(yi.qb)) yi € P M
Where p represents the subassembly that is a part of N or R set, 8; € 6 the natural parameter and ¢ is the scale
parameter.
Then the probability density for the variable Y;, Y, -+-, Y, is given by the following expression;
f16,¢) = [1iz, £ 4il6:, @) (@)
By applying the necessary mathematical manipulation, the equation 4.10 can be rewritten  by:
S Vifi- S, b(B)
F16,¢) = exp (222022200 4 5w oy, 0,)) )
e Alinear predictor, which has the familiar form of an ordinary linear model.
@i = a+ Bix;, + Byxiz + -+ Bixy, 4
e  Given the parameters S;,8,,---, By through the function (g) of the mean (u) written in the linear form for a
variable X
n
9P)=XB=fo+ ) Bixate ©)
j=

The function (g) is known as a link function given that it is a monotonous and differentiable function (g) connected
to the linear predictor, mean () and error €. The link function transforms the expected value of the response variable u; =
E[y;1{x,, ..., x,}] and since it is invertible, we then get:

wi =g () (6)

The GLM can be a linear or nonlinear regression model that transforms the expected outcome of a response variable.
Furthermore, the conditional variance of a distribution in the exponential family is determined by its mean and a constant
dispersion parameter, indicating the specific distribution used.

Table 3.

Shows the distribution of GMLs with their link function.

Distribution Link Function Variance Function

Gaussian Identity ¢

Binomial Logit wi(1 =)
Ni

Poisson Log Ui

Inverse Gaussian Inverse Square ou;3

Gamma Inverse ou;?

3.4. Random Forest
Breiman [20] introduced the Random Forest (RF) classifier, which is an ensemble learning method built on multiple
classification trees h, (X|6,) , where each tree has parameters 6, randomly picked from a model random vector 6.
For the final classification, the RF algorithm aggregates the predictions from all trees in the ensemble. Specifically,
given an input X each tree h, (X) cast a vote for the class label, and the class with the most popular votes wins.
Formally, provided dataset D = {(x;, y;)}{-,, we train multiple classifier h; (X), where each classifier is defined as:
h (X) = h(X16) (7
Each tree predictor is associated with an outcome y € {+1} for classification tasks.
For regression the algorithm is given:
(a) From the training data, create a bootstrap sample Zx of size N.
(b) To the bootstrapped data, grow a random forest tree T, by recursively repeating the following procedures for
each terminal node of the tree until the minimal node size n,,;,, is attained.
l. From the p variables, choose m variables at random.
Il. Choose the optimal variable/split point from the m.
. Divide the node into two daughters.
1. Ensemble on output {T,}; trees
Now predict new variable x given by:

500 = S X5 To(0) 8)

This approach ensures robustness and reduces variance while maintaining high predictive accuracy

3.5. XGBoost

XGBoost is a method that includes Friedman [21] boosting model which was created by Chen and Guestrin [22]. It is a
boosting integration model that combines the gradient boost method and decision trees. Instead of utilising the search
method, XGBoost directly uses the loss function's first and second derivative values, improving algorithm performance
through approaches such as pre-ordering and node number of bits. After incorporating the regularisation term, the XGBoost
model selects a basic model that performs well. The regularisation item is utilised in each iteration to reduce weak learner
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overfitting and does not contribute to the final model's integration. Taylor's formula is applied in each iteration to enlarge
the goal function [22]. The equation is:

~(t— 1
s© =37 13 0) + 2fe (k) + 5 hife (02 + 0(f) )
Where 5¢~1 represents the predictive values of the (t — 1) iterations, z; and h; are the first and second derivates, ¢(f)
is the regulation item, t is the t** interaction, and i is the i**sample. The complexity of the tree is given by:

T, 4 1 T 2
j=1

Where T, is the number of leaf nodes in the round t iteration, w; represents the weight of the jt"leaf node.

3.6. Gradient Boost Model
The GBM is a boosting-like algorithm for regression [21]. The algorithm iteratively combines weak learners with those

that do marginally better than the RF to create strong learners [23]. For a given training data set § = {xi3yi}? , the aim of
the algorithm is to estimate an approximation w(x), in the function w(x), which directs the input function X into the output
y, by reducing the predicted value of the given loss function, L(yl, w(x)). Then the algorithm builds an addictive
approximation w * (x) as the sum of weighted functions
W (X) = W1 (X) + Prhy (%) (11)

Where the weight of the m®" function, h,,, (x) is p,y,.

These functions represent the ensemble's models, such as decision trees. The approximation is created iteratively. First,
a constant approximation of w * (x) is derived as

Fo(x) = argmin ¥V, L(y;, @) (12)
The following models are predicted to minimise:
(P, hn (1) = argmin 3. L(ys, 0m-1 (%)) + Ph(x) (13)

Instead of explicitly addressing the optimisation issue, consider each h,, as a greedy step in a gradient descent
optimisation for w *. To train each model, hm, on a fresh dataset § = {xi3yi}:l, the pseudo-residuals, r;,,;, are computed
using:

o= [6L(yi,w(x))
oL e® domeon

The value of p,, is determined by solving a line search optimisation issue. If the iterative procedure is not correctly
regularised, this technique may experience overfitting . If the model completely fits the pseudo-residues for certain loss
functions, such as quadratic loss, the process may end prematurely if the pseudo-residues become zero in the subsequent
iteration. Multiple regularisation hyper-parameters are used to manage the additive process of gradient boosting.

Several regularisation hyper-parameters are used to manage the additive gradient boosting process. To regularise
gradient boosting, use shrinkage to lower each gradient decent step: w,,(x) = w;—1(x) + vp,hy (x) , where v = (0, 1.0].
The value of v is typically set to 0.1. Limiting the complexity of learned models allows for additional regularisation. To
restrict the depth of decision trees, we can provide the minimum number of instances required to divide a node. Unlike
random forest, gradient boosting's default hyper-parameters limit the expressive capability of trees (e.g., depth to = 3 — 5)
[24]. Finally, another family of hyper-parameters is provided in the various versions. Gradient boosting techniques, such as
random subsampling, can enhance ensemble generalisation [21].

(14)

3.7. Artificial Neural Network

ANN is a widely used supervised machine learning technique among a variety of domains. It comprises three layers:
input, hidden, and output. Its performance is heavily influenced by its structure, including the hidden layers and neurons
used [25]. In this study, the feedforward back-propagation neural network, a multilayer perceptron network, is chosen for
its straightforward methodology and broad application. Backpropagation (BP) is a very efficient and widely used learning
method in multi-layer networks [26, 27].

Now suppose there are n neurons in the input layer, seven in the hidden layer, and two in the output layer. Let the input
vector be:

Xie = (qp + X, Xni) for k=1,2,..., m. (15)

The weights «;; link the input layer to the hidden layer, while ;; connect the hidden layer to the output layer value,
withi=1,2,..,nj=1,2,..5 and [ = 1, 2. Neurons within the same layer are not interconnected, but connections exist
between the input, hidden, and output layers.

Assuming the activation function is the sigmoid function, input samples X;;X,..,X,, are sequentially processed.
Selecting the k-th input sample X, , the corresponding hidden layer input vector is:

Y = (}’1k + }’2k,~--,)’7k) (16)
And the hidden layer output is:

Zk = (Zlk + sz‘....'an) (17)
The output vector is denoted as:

Y = G1ir V2r) (18)

And the output layer output as:
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zk = 21k Z21) (19)
The threshold of each neuron in the output layer is denoted as a; and b; the threshold of each neuron in the output layer
the inspirit function is given by f(¢;) , | the learning parameter and expected is given by:

% Zizzl(rzk - 2y)? (20)
To compute the input and output of neurons in the hidden and output layers, the following derivatives are used:
Yik = Z}:l AijXix — 4j, (21)
e = f(¥j,): (22)
ik = 217'=1 [))jl Zjk — by, (23)
Zlk =) (24)

To calculate the partial derivative of the error function for each neuron in the output layer, the predicted and actual
network outputs are derived as follows.

1 o2 R
0E 0 [7 lel(ﬁk — 24

W , EpY
00, (= /Gw)’]
aylk ) 2
== 21=1(7‘1k = 2y)f () = — Sk (25)

To compute the partial derivative of the error function for each neuron in the hidden layer, the algorithm uses the
output layer, output layer, and output of the hidden layer as follows:

DG e 2 , _
e e (21:1 5zk.3jz) f (ij) = —Pjk- (26)
Using the above two formulae, we can calculate the change in weight value (B;,) for each modification by:
_ OE 63~/ik _ )
A6, = llaﬁji By U611 Zj.- (27)
Immediately follows N adjustments, the (N + 1)¢" value is a
i = Bl + 4B, (28)
Similarly, we can obtain the change in weight value a;; in each adjustment and the (N + 1) th value after N adjustments.
0E
da;j = “Hiay = KX ije Py (29)
ali* = af} + Aay;, (30)
The global error can be calculated as follows.
1 " 2 Y
E= azkﬂ Zi=1(7’zk — Zy)”. (31)

Finally, in the algorithm, we compare the size of the global error with the setting error. If the global error exceeds the
setting error, we keep adjusting the weights until the setting error is met.

3.8. Risk Evaluation and Model Assessment
Evaluating the performance of the crossbreed models , RMSE, R? and MAE are used. The mathematical formulas for
these metrics are explained below.

3.9. RMSE

RMSE is the average difference between a statistical model's projected values and its actual results. It is
mathematically defined as the residuals' standard deviation. The residuals reflect an average distance between the
regression line and the data points.

RMSE = j;ZJ(Y, -7’ (32)

3.10. MAE

MAE is a measure of the average magnitude of errors in a set of predictions, without regard for direction [28]. It is
calculated as the average absolute difference between predicted and actual values and used to evaluate the efficacy of a
regression model.

N —
MAE = L3 1%, =Y’ (33)
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RZ
The R? approach is used to forecast and explain a model's future results [29]. This method is sometimes referred to as
R squared and serves as a guideline for assessing the model's correctness.
RZ =1— Zg:ﬂ?h_)ih)z (34)
Y e (Yr=TR)?
4. Results
4.1. Comparative Analysis

The results in Table 4 evaluate the standard method (GLM with Gamma distribution) and the optimised iterative
(hybrid) method demonstrates a substantial improvement in predictive performance when using machine learning
approaches such as XGBoost, RF, GBM, and ANN.

On the training set, the standard GLM achieved a modest coefficient of determination (R2 = 0.23), alongside relatively
high error values (RMSE = 83,992; MAE = 56,943). In contrast, the hybrid machine learning models yielded markedly
higher explanatory power, with R? values consistently around 0.39-0.40, and lower error metrics. Notably, XGBoost and
ANN exhibited the best balance of predictive fit, producing the lowest RMSE (= 82,066 and 82,078, respectively) relative
to other models.

On the test set, the performance gap was even more evident. The GLM baseline recorded R = 0.19 with higher errors
(RMSE = 84,789; MAE = 60,897), whereas all hybrid models outperformed it substantially. XGBoost, RF, and ANN each
achieved Rz = 0.42, with RMSE values near 81,200 and MAE values close to 61,500. These results confirm the robustness
of the machine learning approaches, which not only generalised better than the standard method but also delivered lower
prediction errors.

Overall, the findings suggest that the optimised iterative hybrid method is superior to the standard GLM baseline in
both training and testing phases. Among the tested models, XGBoost, RF, and ANN demonstrate the strongest
generalisation performance, making them more suitable for practical predictive applications in this context.

gg?ilriiiéd iterative methods against the GLM with GAMMA distribution

Standard Method Optimised iterative method (Hybrid) R? RMSE MAE

GLM(GAMMA) Train | NONE 0.23 83992 56943
XGBoost 0.40 82066 63599
RF 0.40 82434 63821
GBM 0.39 83033 64031
ANN 0.40 82078 63600

GLM(GAMMA) Test None 0.19 84789 60897
XGBoost 0.42 81200 61500
RF 0.42 81222 61589
GBM 0.40 83032 62300
ANN 0.42 81221 61549

4.2. Test Statistics

H,: The standard GLM with a Gamma distribution and the optimised iterative hybrid approach yield similar predictive
performance.

H,: The converse is true
a :0.05

Table 5.
Two-Sample t-Test Results for Model Performance Measures.

Performance Measures | Method Variances DF T Value Pr > |t]
R"2 Pooled Equal 8 -3.33 0.0104
Satterthwaite | Unequal 3.5651 -5.03 0.0099
MAE Pooled Equal 8 16.61 <.0001
Satterthwaite | Unequal 1.0898 9.6 0.055
RMSE Pooled Equal 8 5.03 0.001
Satterthwaite | Unequal 3.0798 7.26 0.0049

5. Conclusion

At the 5% significance level, the optimised iterative hybrid GLM demonstrates statistically significant differences from
the standard GLM across key predictive performance measures. The improvement in model fit is supported by significantly
higher R2 values under both variance assumptions. RMSE is also consistently and significantly different, indicating a
meaningful change in predictive precision. MAE shows a significant difference under the pooled assumption but not under
the unequal variance test, suggesting that this result should be interpreted with caution. Taken together, these findings
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indicate that the optimised GLM offers measurable improvements in explanatory power, although the evidence regarding
predictive accuracy is more mixed.

6. Discussion

The comparative analysis between the standard Generalised Linear Model (GLM) with a Gamma distribution and the
optimised iterative hybrid method highlights the advantages of employing advanced machine learning techniques in
predictive modelling. The baseline GLM demonstrated relatively weak explanatory power (R2 = 0.23 on training, 0.19 on
testing) alongside comparatively higher prediction errors (RMSE = 83,992-84,789; MAE = 56,943-60,897). In contrast,
hybrid machine learning models XGBoost, RF, GBM, and ANN consistently achieved superior performance.

On both the training and testing datasets, XGBoost, RF, and ANN delivered the strongest predictive performance, each
producing R? values around 0.40-0.42 and lower error metrics relative to the GLM baseline. These results confirm that the
optimised hybrid method generalises better to unseen data, thereby reducing the risk of overfitting while maintaining
predictive accuracy. XGBoost and ANN provided the lowest RMSE scores, underscoring their capacity to minimise
prediction error. This aligns with the findings of previous studies, such as those by Buthelezi et al. (2024) [4] and Wilson et
al. (2024) [6], which highlight the potential of ML techniques to outperform conventional actuarial models in predictive
tasks.

The formal hypothesis testing further substantiates these empirical observations. At a 5% significance level, the hybrid
models exhibited statistically significant improvements in R?2 and RMSE, reinforcing the claim that they offer enhanced
explanatory power and predictive precision compared with the standard GLM. While the results for MAE were significant
under the pooled variance assumption, they did not hold under the unequal variance test, suggesting that improvements in
absolute error should be interpreted with caution. This nuance highlights that while the hybrid models generally outperform
the GLM, the magnitude of improvement may vary depending on the performance metric considered.

7. Conclusion

The findings of this study demonstrate that the optimised iterative hybrid approach offers a robust and statistically
significant improvement over the standard GLM with Gamma distribution. The machine learning models particularly
XGBoost, RF, and ANN not only enhanced explanatory power but also improved predictive precision, as evidenced by
higher R2 values and lower RMSE scores across both training and testing phases.

Although the evidence for improvements in MAE is less conclusive, the overall performance gains indicate that the
hybrid method represents a more effective predictive modelling framework than the traditional GLM baseline.
Consequently, these results suggest that integrating iterative optimisation with advanced ML algorithms can provide a more
reliable and generalisable solution for predictive analytics in this context.

7.1. Limitations

Despite the promising results, this study has few limitations that warrant consideration. Firstly, the analysis is based on
historical claims data from a single South African non-life vehicle insurance company, which may limit the generalisability
of the findings to other contexts or regions. Future research should consider a broader dataset encompassing diverse
geographical and market conditions to validate the robustness of the hybrid models. Furthermore, the study employs
specific ML techniques and hyperparameter tuning methods, which may not represent the full spectrum of available
optimisation strategies. Exploring alternative ML algorithms and optimisation techniques could provide additional insights
into the most effective approaches for enhancing GLM performance in insurance pricing.
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